Citation: | Liu Tao, Xie Jinsen. Study on Transient Parameter Prediction and Fault Diagnosis of Nuclear Power Plant Based on LSTM Neural Network[J]. Nuclear Power Engineering, 2025, 46(2): 230-238. doi: 10.13832/j.jnpe.2024.080036 |
[1] |
刘峰,余刃,李凤宇,等. 基于复合人工神经网络的核电站实时故障诊断方法研究[J]. 核动力工程,2007, 28(2): 95-100. doi: 10.3969/j.issn.0258-0926.2007.02.022
|
[2] |
WANG P F, ZHANG J X, WAN J S, et al. A fault diagnosis method for small pressurized water reactors based on long short-term memory networks[J]. Energy, 2022, 239: 122298. doi: 10.1016/j.energy.2021.122298
|
[3] |
BAE J, KIM G, LEE S J. Real-time prediction of nuclear power plant parameter trends following operator actions[J]. Expert Systems with Applications, 2021, 186: 115848. doi: 10.1016/j.eswa.2021.115848
|
[4] |
冯千懿,郭张鹏,李仲春,等. 基于时序深度学习模型的安全壳关键参数快速预测研究[J]. 核动力工程,2022, 43(6): 79-84.
|
[5] |
孙原理,宋志浩. 基于卷积长短期记忆网络和人工鲸鱼算法的核反应堆运行事件诊断方法研究[J]. 核动力工程,2022, 43(4): 185-190.
|
[6] |
梁杰恒. 基于深度学习的核电厂运行状态智能诊断及预测方法研究[D]. 广州: 华南理工大学,2022.
|
[7] |
HOCHREITER S. The vanishing gradient problem during learning recurrent neural nets and problem solutions[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1998, 6(2): 107-116. doi: 10.1142/S0218488598000094
|
[8] |
KHAN A H, ISLAM M S. A pctran-based investigation on the effect of inadvertent control rod withdrawal on the thermal-hydraulic parameters of a VVER-1200 nuclear power reactor[J]. Acta Mechanica Malaysia, 2019, 2(2): 32-38. doi: 10.26480/amm.02.2019.32.38
|
[9] |
MAHMOUD T A, SHETA A A, FIKRY R M, et al. Design of data-driven model for the pressurizer system in nuclear power plants using a TSK fuzzy neural network[J]. Nuclear Engineering and Design, 2022, 399: 112015. doi: 10.1016/j.nucengdes.2022.112015
|
[10] |
刘飞. 核电厂计算机化操作规程系统研究[D]. 哈尔滨: 哈尔滨工程大学,2009.
|
[11] |
LUNDBERG S M, ERION G, CHEN H, et al. From local explanations to global understanding with explainable AI for trees[J]. Nature Machine Intelligence, 2020, 2(1): 56-67. doi: 10.1038/s42256-019-0138-9
|
[12] |
VASEGHI S V. Advanced digital signal processing and noise reduction[M]. Hoboken: John Wiley & Sons, 2008: 48-134.
|
[13] |
WATANABE K, MATSUURA I, ABE M, et al. Incipient fault diagnosis of chemical processes via artificial neural networks[J]. AIChE Journal, 1989, 35(11): 1803-1812. doi: 10.1002/aic.690351106
|
[14] |
CAI L F, TIAN X M, CHEN S. A process monitoring method based on noisy independent component analysis[J]. Neurocomputing, 2014, 127: 231-246. doi: 10.1016/j.neucom.2013.07.029
|