Advance Search
Volume 46 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
Liu Tao, Xie Jinsen. Study on Transient Parameter Prediction and Fault Diagnosis of Nuclear Power Plant Based on LSTM Neural Network[J]. Nuclear Power Engineering, 2025, 46(2): 230-238. doi: 10.13832/j.jnpe.2024.080036
Citation: Liu Tao, Xie Jinsen. Study on Transient Parameter Prediction and Fault Diagnosis of Nuclear Power Plant Based on LSTM Neural Network[J]. Nuclear Power Engineering, 2025, 46(2): 230-238. doi: 10.13832/j.jnpe.2024.080036

Study on Transient Parameter Prediction and Fault Diagnosis of Nuclear Power Plant Based on LSTM Neural Network

doi: 10.13832/j.jnpe.2024.080036
  • Received Date: 2024-07-14
  • Rev Recd Date: 2024-10-08
  • Available Online: 2025-01-15
  • Publish Date: 2025-04-15
  • To improve the accuracy and real-time performance of parameter prediction and fault diagnosis under transient conditions in nuclear power plants, this study employs a Long Short-Term Memory (LSTM) neural network model for prediction and diagnosis. By generating and randomizing fault scenarios, the model’s dependence on specific patterns is reduced, and its generalization capability in unknown fault situations is enhanced. The study integrates SHAP (SHapley Additive exPlanations) to conduct interpretability analysis on the parameter prediction results, evaluates the impact of different input features on the model’s predictive performance, and verifies its effectiveness under sensor failures and data transmission errors. Furthermore, fault diagnosis is performed on transient parameters with different noise levels to validate the model's robustness. The results demonstrate that the LSTM model achieves high accuracy in both prediction and diagnosis, and it maintains excellent performance even under sensor failures, data transmission errors, and noisy data. The method proposed in this study can improve the safety and stability of nuclear power plant operation and provide effective technical support for safety under accident conditions.

     

  • loading
  • [1]
    刘峰,余刃,李凤宇,等. 基于复合人工神经网络的核电站实时故障诊断方法研究[J]. 核动力工程,2007, 28(2): 95-100. doi: 10.3969/j.issn.0258-0926.2007.02.022
    [2]
    WANG P F, ZHANG J X, WAN J S, et al. A fault diagnosis method for small pressurized water reactors based on long short-term memory networks[J]. Energy, 2022, 239: 122298. doi: 10.1016/j.energy.2021.122298
    [3]
    BAE J, KIM G, LEE S J. Real-time prediction of nuclear power plant parameter trends following operator actions[J]. Expert Systems with Applications, 2021, 186: 115848. doi: 10.1016/j.eswa.2021.115848
    [4]
    冯千懿,郭张鹏,李仲春,等. 基于时序深度学习模型的安全壳关键参数快速预测研究[J]. 核动力工程,2022, 43(6): 79-84.
    [5]
    孙原理,宋志浩. 基于卷积长短期记忆网络和人工鲸鱼算法的核反应堆运行事件诊断方法研究[J]. 核动力工程,2022, 43(4): 185-190.
    [6]
    梁杰恒. 基于深度学习的核电厂运行状态智能诊断及预测方法研究[D]. 广州: 华南理工大学,2022.
    [7]
    HOCHREITER S. The vanishing gradient problem during learning recurrent neural nets and problem solutions[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1998, 6(2): 107-116. doi: 10.1142/S0218488598000094
    [8]
    KHAN A H, ISLAM M S. A pctran-based investigation on the effect of inadvertent control rod withdrawal on the thermal-hydraulic parameters of a VVER-1200 nuclear power reactor[J]. Acta Mechanica Malaysia, 2019, 2(2): 32-38. doi: 10.26480/amm.02.2019.32.38
    [9]
    MAHMOUD T A, SHETA A A, FIKRY R M, et al. Design of data-driven model for the pressurizer system in nuclear power plants using a TSK fuzzy neural network[J]. Nuclear Engineering and Design, 2022, 399: 112015. doi: 10.1016/j.nucengdes.2022.112015
    [10]
    刘飞. 核电厂计算机化操作规程系统研究[D]. 哈尔滨: 哈尔滨工程大学,2009.
    [11]
    LUNDBERG S M, ERION G, CHEN H, et al. From local explanations to global understanding with explainable AI for trees[J]. Nature Machine Intelligence, 2020, 2(1): 56-67. doi: 10.1038/s42256-019-0138-9
    [12]
    VASEGHI S V. Advanced digital signal processing and noise reduction[M]. Hoboken: John Wiley & Sons, 2008: 48-134.
    [13]
    WATANABE K, MATSUURA I, ABE M, et al. Incipient fault diagnosis of chemical processes via artificial neural networks[J]. AIChE Journal, 1989, 35(11): 1803-1812. doi: 10.1002/aic.690351106
    [14]
    CAI L F, TIAN X M, CHEN S. A process monitoring method based on noisy independent component analysis[J]. Neurocomputing, 2014, 127: 231-246. doi: 10.1016/j.neucom.2013.07.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(7)

    Article Metrics

    Article views (48) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return