Advance Search
Turn off MathJax
Article Contents
Xiao Wei, Liu Xiaojing, Zhang Tengfei, Zu Jianhua, Chai Xiang, He Hui. Reduced Order Modeling for Neutron Transport Equation Based on Operator Inference[J]. Nuclear Power Engineering. doi: 10.13832/j.jnpe.2024.080042
Citation: Xiao Wei, Liu Xiaojing, Zhang Tengfei, Zu Jianhua, Chai Xiang, He Hui. Reduced Order Modeling for Neutron Transport Equation Based on Operator Inference[J]. Nuclear Power Engineering. doi: 10.13832/j.jnpe.2024.080042

Reduced Order Modeling for Neutron Transport Equation Based on Operator Inference

doi: 10.13832/j.jnpe.2024.080042
  • Received Date: 2024-08-15
  • Rev Recd Date: 2024-10-14
  • Available Online: 2025-01-15
  • To establish a real-time prediction model for the time-dependent neutron transport equation, the affine-parametric operator inference is employed to train a reduced-order model of the neutron transport equation. Operator inference, through singular value decomposition and solving optimization problem, non-intrusively fits the operators of the reduced dynamic equations in the subspace while preserving the physical structure described by the original governing equations. The affine-parametric structure effectively addresses the time-varying parameters in time-dependent neutron transport equations, achieving rapid solutions with time-varying parameters without implementing interpolation in the parameter space. The numerical results show that the reduced-order model based on high-fidelity data and affine-parametric operator inference has good generalization ability, accurately solving transient problems under different time-varying parameters. Therefore, the reduced-order model proposed in this study can be used for real-time prediction of high-fidelity neutron transport equations.

     

  • loading
  • [1]
    GONG H L, CHENG S B, CHEN Z, et al. Data-enabled physics-informed machine learning for reduced-order modeling digital twin: application to nuclear reactor physics[J]. Nuclear Science and Engineering, 2022, 196(6): 668-693. doi: 10.1080/00295639.2021.2014752
    [2]
    ZHANG T F, XIAO W, YIN H, et al. VITAS: A multi-purpose simulation code for the solution of neutron transport problems based on variational nodal methods[J]. Annals of Nuclear Energy, 2022, 178: 109335. doi: 10.1016/j.anucene.2022.109335
    [3]
    XIAO W, YIN H, LIU X J, et al. On the transient models of the VITAS code: applications to the C5G7-TD pin-resolved benchmark problem[J]. Nuclear Science and Techniques, 2023, 34(2): 20. doi: 10.1007/s41365-023-01170-x
    [4]
    BENNER P, GUGERCIN S, WILLCOX K. A survey of projection-based model reduction methods for parametric dynamical systems[J]. SIAM Review, 2015, 57(4): 483-531. doi: 10.1137/130932715
    [5]
    HUHN Q A, TANO M E, RAGUSA J C, et al. Parametric dynamic mode decomposition for reduced order modeling[J]. Journal of Computational Physics, 2023, 475: 111852. doi: 10.1016/j.jcp.2022.111852
    [6]
    DUAN J M, HESTHAVEN J S. Non-intrusive data-driven reduced-order modeling for time-dependent parametrized problems[J]. Journal of Computational Physics, 2024, 497: 112621. doi: 10.1016/j.jcp.2023.112621
    [7]
    SARTORI A, BAROLI D, CAMMI A, et al. Comparison of a modal method and a proper orthogonal decomposition approach for multi-group time-dependent reactor spatial kinetics[J]. Annals of Nuclear Energy, 2014, 71: 217-229. doi: 10.1016/j.anucene.2014.03.043
    [8]
    DI RONCO A, INTROINI C, CERVI E, et al. Dynamic mode decomposition for the stability analysis of the molten salt fast reactor core[J]. Nuclear Engineering and Design, 2020, 362: 110529. doi: 10.1016/j.nucengdes.2020.110529
    [9]
    HARDY Z K, MOREL J E. Proper orthogonal decomposition mode coefficient interpolation: a non-intrusive reduced-order model for parametric reactor kinetics[J]. Nuclear Science and Engineering, 2024, 198(4): 832-852. doi: 10.1080/00295639.2023.2218581
    [10]
    LI W H, PENG S T, LI J G, et al. Prediction of state transitions in 3D core dynamics and xenon transients based on dynamic mode decomposition[J]. Annals of Nuclear Energy, 2024, 197: 110258. doi: 10.1016/j.anucene.2023.110258
    [11]
    PEHERSTORFER B, WILLCOX K. Data-driven operator inference for nonintrusive projection-based model reduction[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 196-215. doi: 10.1016/j.cma.2016.03.025
    [12]
    BENNER P, GOYAL P, KRAMER B, et al. Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113433. doi: 10.1016/j.cma.2020.113433
    [13]
    MCQUARRIE S A, KHODABAKHSHI P, WILLCOX K E. Nonintrusive reduced-order models for parametric partial differential equations via data-driven operator inference[J]. SIAM Journal on Scientific Computing, 2023, 45(4): A1917-A1946. doi: 10.1137/21M1452810
    [14]
    张滕飞,殷晗,孙启政,等. 通用型中子输运程序VITAS应用研究[J]. 核动力工程,2023, 44(2): 15-23.
    [15]
    孙启政,刘晓晶,张滕飞. 非结构网格变分节块法在氦氙冷却小型反应堆中的应用[J]. 核动力工程,2024, 45(5): 26-31.
    [16]
    YIN H, LIU X J, ZHANG T F. An efficient parallel algorithm of variational nodal method for heterogeneous neutron transport problems[J]. Nuclear Science and Techniques, 2024, 35(4): 69. doi: 10.1007/s41365-024-01430-4
    [17]
    HSIEH A, ZHANG G C, YANG W S. Consistent transport transient solvers of the high-fidelity transport code PROTEUS-MOC[J]. Nuclear Science and Engineering, 2020, 194(7): 508-540. doi: 10.1080/00295639.2020.1746619
    [18]
    CHO N Z. KAIST benchmark problems in reactor and particle transport physics[EB/OL]. (2022-05-29)[2024-01-01]. https://github.com/nzcho/Nurapt-Archives/tree/master/KAIST-Benchmark-Problems.
    [19]
    HOU J, IVANOV K N, BOYARINOV V F, et al. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization[J]. Nuclear Engineering and Design, 2017, 317: 177-189. doi: 10.1016/j.nucengdes.2017.02.008
    [20]
    UY W I T, HARTMANN D, PEHERSTORFER B. Operator inference with roll outs for learning reduced models from scarce and low-quality data[J]. Computers & Mathematics with Applications, 2023, 145: 224-239.
    [21]
    PEHERSTORFER B. Sampling low-dimensional markovian dynamics for preasymptotically recovering reduced models from data with operator inference[J]. SIAM Journal on Scientific Computing, 2020, 42(5): A3489-A3515. doi: 10.1137/19M1292448
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return