Citation: | Zhang Dazhi, Wang Zhihui, Zhou Huabing, Fu Yongjie, Xi Jiaxuan. Optimization of Nuclear Power Accident Diagnosis Procedures Based on SAC Reinforcement Learning[J]. Nuclear Power Engineering, 2024, 45(S1): 85-90. doi: 10.13832/j.jnpe.2024.S1.0085 |
[1] |
许勇,蔡云泽,宋林. 基于数据驱动的核电设备状态评估研究综述[J]. 上海交通大学学报,2022, 56(3): 267-278.
|
[2] |
齐奔,梁金刚,张立国,等. 基于贝叶斯分类器的核电厂事故诊断方法研究[J]. 原子能科学技术,2022, 56(3): 512-519. doi: 10.7538/yzk.2021.youxian.0120
|
[3] |
蒋建军,张力,王以群,等. 基于隐马尔可夫的核电厂半数字化人-机界面事故诊断过程人因可靠性模型[J]. 核动力工程,2012, 33(5): 79-82,128. doi: 10.3969/j.issn.0258-0926.2012.05.017
|
[4] |
李映林. 数字化核电站智能诊断系统研究[D]. 哈尔滨: 哈尔滨工程大学,2008.
|
[5] |
张燕,周志伟,董秀臣. 核电厂实时故障诊断专家系统的设计与实现[J]. 原子能科学技术,2006, 40(4): 420-423.
|
[6] |
LAHEY JR R T, MOODY F J. The thermal-hydraulics of a boiling water nuclear reactor[M]. Illinois: Amer Nuclear Society, 1993: 25-27.
|
[7] |
LEE D, ARIGI A M, KIM J. Algorithm for autonomous power-increase operation using deep reinforcement learning and a rule-based system[J]. IEEE Access, 2020, 8: 196727-196746. doi: 10.1109/ACCESS.2020.3034218
|
[8] |
FU H B, LIU W M, WU S, et al. Actor-critic policy optimization in a large-scale imperfect-information game[C]//Proceedings of the 10th International Conference on Learning Representations. OpenReview. net, 2022.
|
[9] |
DEGRAVE J, FELICI F, BUCHLI J, et al. Magnetic control of tokamak plasmas through deep reinforcement learning[J]. Nature, 2022, 602(7897): 414-419. doi: 10.1038/s41586-021-04301-9
|
[10] |
俞尔俊. 秦山核电厂主蒸汽管道破裂事故的分析研究[J]. 原子能科学技术,1989, 23(5): 15-22. doi: 10.7538/yzk.1989.23.05.0015
|
[11] |
TOROMANOFF M, WIRBEL E, MOUTARDE F. End-to-end model-free reinforcement learning for urban driving using implicit affordances[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 7151-7160.
|
[12] |
PARK J, KIM T, SEONG S, et al. Control automation in the heat-up mode of a nuclear power plant using reinforcement learning[J]. Progress in Nuclear Energy, 2022, 145: 104107. doi: 10.1016/j.pnucene.2021.104107
|