Advance Search
Volume 45 Issue S1
Jun.  2024
Turn off MathJax
Article Contents
Zhang Dazhi, Wang Zhihui, Zhou Huabing, Fu Yongjie, Xi Jiaxuan. Optimization of Nuclear Power Accident Diagnosis Procedures Based on SAC Reinforcement Learning[J]. Nuclear Power Engineering, 2024, 45(S1): 85-90. doi: 10.13832/j.jnpe.2024.S1.0085
Citation: Zhang Dazhi, Wang Zhihui, Zhou Huabing, Fu Yongjie, Xi Jiaxuan. Optimization of Nuclear Power Accident Diagnosis Procedures Based on SAC Reinforcement Learning[J]. Nuclear Power Engineering, 2024, 45(S1): 85-90. doi: 10.13832/j.jnpe.2024.S1.0085

Optimization of Nuclear Power Accident Diagnosis Procedures Based on SAC Reinforcement Learning

doi: 10.13832/j.jnpe.2024.S1.0085
  • Received Date: 2024-01-01
  • Rev Recd Date: 2024-04-11
  • Publish Date: 2024-06-15
  • This paper proposes an optimization method for nuclear accident diagnosis procedures based on the Soft Actor-Critic (SAC) reinforcement learning model. Using a decision tree model as the foundation to optimize the judgment strategy of accident detection procedures, which significantly improves the performance of accident detection while maintaining the interpretability of the decision model. The model employs SAC as the reinforcement learning algorithm, which defines the state as a combination of current operating data and historical data, sets the actions as the adjustment of the decision threshold of diagnostic procedures, and reflects the accuracy of diagnosis through the returns. With the help of SAC algorithm, the system constantly adjusts the threshold to optimize the strategy to obtain the best diagnosis effect. In a simulated Main Steam Line Break (MSLB) accident scenario, the model can better adapt to and comprehend complex high-dimensional data, find the optimal control strategy under specific performance indicators, and the accuracy is steadily approaching 1. The proposed method significantly reduces the false positive rate, and it not only detects nuclear power accidents more accurately, but also shows excellent results in reducing false alarms, thus improving the safety of nuclear power operation.

     

  • loading
  • [1]
    许勇,蔡云泽,宋林. 基于数据驱动的核电设备状态评估研究综述[J]. 上海交通大学学报,2022, 56(3): 267-278.
    [2]
    齐奔,梁金刚,张立国,等. 基于贝叶斯分类器的核电厂事故诊断方法研究[J]. 原子能科学技术,2022, 56(3): 512-519. doi: 10.7538/yzk.2021.youxian.0120
    [3]
    蒋建军,张力,王以群,等. 基于隐马尔可夫的核电厂半数字化人-机界面事故诊断过程人因可靠性模型[J]. 核动力工程,2012, 33(5): 79-82,128. doi: 10.3969/j.issn.0258-0926.2012.05.017
    [4]
    李映林. 数字化核电站智能诊断系统研究[D]. 哈尔滨: 哈尔滨工程大学,2008.
    [5]
    张燕,周志伟,董秀臣. 核电厂实时故障诊断专家系统的设计与实现[J]. 原子能科学技术,2006, 40(4): 420-423.
    [6]
    LAHEY JR R T, MOODY F J. The thermal-hydraulics of a boiling water nuclear reactor[M]. Illinois: Amer Nuclear Society, 1993: 25-27.
    [7]
    LEE D, ARIGI A M, KIM J. Algorithm for autonomous power-increase operation using deep reinforcement learning and a rule-based system[J]. IEEE Access, 2020, 8: 196727-196746. doi: 10.1109/ACCESS.2020.3034218
    [8]
    FU H B, LIU W M, WU S, et al. Actor-critic policy optimization in a large-scale imperfect-information game[C]//Proceedings of the 10th International Conference on Learning Representations. OpenReview. net, 2022.
    [9]
    DEGRAVE J, FELICI F, BUCHLI J, et al. Magnetic control of tokamak plasmas through deep reinforcement learning[J]. Nature, 2022, 602(7897): 414-419. doi: 10.1038/s41586-021-04301-9
    [10]
    俞尔俊. 秦山核电厂主蒸汽管道破裂事故的分析研究[J]. 原子能科学技术,1989, 23(5): 15-22. doi: 10.7538/yzk.1989.23.05.0015
    [11]
    TOROMANOFF M, WIRBEL E, MOUTARDE F. End-to-end model-free reinforcement learning for urban driving using implicit affordances[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 7151-7160.
    [12]
    PARK J, KIM T, SEONG S, et al. Control automation in the heat-up mode of a nuclear power plant using reinforcement learning[J]. Progress in Nuclear Energy, 2022, 145: 104107. doi: 10.1016/j.pnucene.2021.104107
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (44) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return