Advance Search
Volume 45 Issue S1
Jun.  2024
Turn off MathJax
Article Contents
Liu Yang, Lu Zhiwei, Ge Hongen, Wu Lixiang, Xue Jiaxiang, Liao Yehong. Study on Internal Pressure Burst, Creep and Fatigue Properties of ODS-FeCrAl Alloy Tube[J]. Nuclear Power Engineering, 2024, 45(S1): 145-151. doi: 10.13832/j.jnpe.2024.S1.0145
Citation: Liu Yang, Lu Zhiwei, Ge Hongen, Wu Lixiang, Xue Jiaxiang, Liao Yehong. Study on Internal Pressure Burst, Creep and Fatigue Properties of ODS-FeCrAl Alloy Tube[J]. Nuclear Power Engineering, 2024, 45(S1): 145-151. doi: 10.13832/j.jnpe.2024.S1.0145

Study on Internal Pressure Burst, Creep and Fatigue Properties of ODS-FeCrAl Alloy Tube

doi: 10.13832/j.jnpe.2024.S1.0145
  • Received Date: 2023-05-26
  • Rev Recd Date: 2024-04-28
  • Publish Date: 2024-06-15
  • The microstructure, internal pressure burst, creep and fatigue properties of oxide dispersion strengthened (ODS)-FeCrAl alloy tube were studied by transmission electron microscopy (TEM), internal pressure burst, creep and fatigue test machine. The results show that a large number of nano-second phase particles are dispersed in the matrix of ODS-FeCrAl alloy tube, with an average diameter of about 8.76 nm and a volume density of 6.8×1022 m–3. The burst strength of ODS-FeCrAl alloy tube is 1158 MPa at room temperature; The burst strength of the ODS-FeCrAl alloy decrease gradually with the increase of temperature; At 1000℃, the ODS-FeCrAl alloy tube does not lose its pressure-bearing ability, and its burst strength is 81 MPa. The ODS-FeCrAl alloy tube shows excellent internal pressure creep resistance (the creep deformation is 0.9%) under the test condition of 350℃/30 MPa. When the peak fatigue loading pressure is lower than 30 MPa at 350°C, there is no fatigue failure of ODS-FeCrAl alloy tube after 1000000 cycles of loading. The internal pressure burst, creep, and fatigue properties of ODS FeCrAl alloy tube are significantly excellent.

     

  • loading
  • [1]
    VISWANATHAN U K, SAH D N, RATH B N, et al. Measurement of fission gas release, internal pressure and cladding creep rate in the fuel pins of PHWR bundle of normal discharge burnup[J]. Journal of Nuclear Materials, 2009, 392(3): 545-551. doi: 10.1016/j.jnucmat.2009.04.021
    [2]
    YADAV A K, MAJUMDAR P, KUMAR R, et al. Experimental simulation of asymmetric heat up of coolant channel under small break LOCA condition for PHWR[J]. Nuclear Engineering and Design, 2013, 255: 138-145. doi: 10.1016/j.nucengdes.2012.11.002
    [3]
    SAWARN T K, BANERJEE S, PANDIT K M, et al. Study of clad ballooning and rupture behavior of fuel pins of Indian PHWR under simulated LOCA condition[J]. Nuclear Engineering and Design, 2014, 280: 501-510. doi: 10.1016/j.nucengdes.2014.10.011
    [4]
    KHAN M K, PATHAK M, DEO A K, et al. Burst criterion for zircaloy-4 fuel cladding in an inert environment[J]. Nuclear Engineering and Design, 2013, 265: 886-894. doi: 10.1016/j.nucengdes.2013.08.071
    [5]
    LIMON R, LEHMANN S. A creep rupture criterion for Zircaloy-4 fuel cladding under internal pressure[J]. Journal of Nuclear Materials, 2004, 335(3): 322-334. doi: 10.1016/j.jnucmat.2004.07.039
    [6]
    O’DONNELL W J, LANGER B F. Fatigue design basis for Zircaloy components[J]. Nuclear Science and Engineering, 1964, 20(1): 1-12. doi: 10.13182/NSE64-A19269
    [7]
    YAMAMOTO Y, PINT B A, TERRANI K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. Journal of Nuclear Materials, 2015, 467: 703-716. doi: 10.1016/j.jnucmat.2015.10.019
    [8]
    GAMBLE K A, BARANI T, PIZZOCRI D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491: 55-66. doi: 10.1016/j.jnucmat.2017.04.039
    [9]
    YANO Y, TANNO T, OKA H, et al. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions[J]. Journal of Nuclear Materials, 2017, 487: 229-237. doi: 10.1016/j.jnucmat.2017.02.021
    [10]
    WU S J, LI J, LI C J, et al. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging[J]. Journal of Materials Science & Technology, 2021, 83: 49-57.
    [11]
    LI J, WU S J, MA P, et al. Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process[J]. Materials Science and Engineering: A, 2019, 757: 42-51. doi: 10.1016/j.msea.2019.04.088
    [12]
    DRYEPONDT S, UNOCIC K A, HOELZER D T, et al. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding[J]. Journal of Nuclear Materials, 2018, 501: 59-71. doi: 10.1016/j.jnucmat.2017.12.035
    [13]
    常宇宏. 氧化物弥散强化铁素体合金制备及性能研究[D]. 北京: 北京科技大学,2014.
    [14]
    CHO H S, OHKUBO H, IWATA N, et al. Improvement of compatibility of advanced ferritic steels with super critical pressurized water toward a higher thermally efficient water-cooled blanket system[J]. Fusion Engineering and Design, 2006, 81(8-14): 1071-1076. doi: 10.1016/j.fusengdes.2005.09.056
    [15]
    CASTRO V D, JENKINS M. Oxide nanoparticle dispersion in an ODS/Fe12Cr model alloy[J]. Microscopy and Microanalysis, 2008, 14(S2): 646-647. doi: 10.1017/S1431927608083335
    [16]
    LIU T, WANG C X, SHEN H L, et al. The effects of Cr and Al concentrations on the oxidation behavior of oxide dispersion strengthened ferritic alloys[J]. Corrosion Science, 2013, 76: 310-316. doi: 10.1016/j.corsci.2013.07.004
    [17]
    KLIMENKOV M. Quantitative measurement of argon inside of nano-sized bubbles in ODS steels[J]. Journal of Nuclear Materials, 2011, 411(1-3): 160-162. doi: 10.1016/j.jnucmat.2011.01.104
    [18]
    MORLEY N B, ABDOU M A, ANDERSON M, et al. Overview of fusion nuclear technology in the US[J]. Fusion Engineering and Design, 2006, 81(1-7): 33-43. doi: 10.1016/j.fusengdes.2005.06.359
    [19]
    OKSIUTA Z, BALUC N. Optimization of the chemical composition and manufacturing route for ODS RAF steels for fusion reactor application[J]. Nuclear Fusion, 2009, 49(5): 055003. doi: 10.1088/0029-5515/49/5/055003
    [20]
    GAO R, ZHANG T, WANG X P, et al. Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum[J]. Journal of Nuclear Materials, 2014, 444(1-3): 462-468. doi: 10.1016/j.jnucmat.2013.10.038
    [21]
    温敦古,谭军,陈刘涛,等. 核用锆合金包壳管内压爆破试验及性能研究[J]. 材料研究与应用,2016, 10(1): 48-52. doi: 10.3969/j.issn.1673-9981.2016.01.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (38) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return