Citation: | Jin Desheng, Yan Yalun, Cheng Yanhua, Fu Xuefeng, Peng Zhenxun, Liao Yehong, Mao Yulong. Study on Bubble Behavior Mechanism of Saturated Pool Boiling on SiC Cladding Material Surface under Atmospheric Pressure[J]. Nuclear Power Engineering, 2024, 45(S1): 167-174. doi: 10.13832/j.jnpe.2024.S1.0167 |
[1] |
CHEN H, WANG X M, ZHANG R Q. Application and development progress of Cr-based surface coatings in nuclear fuel element: I. Selection, preparation, and characteristics of coating materials[J]. Coatings, 2020, 10(9): 808. doi: 10.3390/coatings10090808
|
[2] |
KIM H G, YANG J H, KIM W J, et al. Development status of accident-tolerant fuel for light water reactors in Korea[J]. Nuclear Engineering and Technology, 2016, 48(1): 1-15. doi: 10.1016/j.net.2015.11.011
|
[3] |
REBAK R B, TERRANI K A, FAWCETT R M. FeCrAl alloys for accident tolerant fuel cladding in light water reactors[C]//Proceedings of ASME 2016 Pressure Vessels and Piping Conference. Vancouver: American Society of Mechanical Engineers, 2016.
|
[4] |
TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. doi: 10.1016/j.jnucmat.2017.12.043
|
[5] |
COLETTI C, JAROSZESKI M J, PALLAORO A, et al. Biocompatibility and wettability of crystalline SiC and Si surfaces[C]//Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon: IEEE, 2007: 5849-5852.
|
[6] |
KAM D H, JEONG Y H, LEE J H. Experiment on pool and flow boiling CHF for the SiC surfaces under atmospheric condition[C]//Proceedings of KNS Fall Meeting. Daejeon: Korean Nuclear Society, 2013.
|
[7] |
SEO H, CHU J H, KWON S Y, et al. Pool boiling CHF of reduced graphene oxide, graphene, and SiC-coated surfaces under highly wettable FC-72[J]. International Journal of Heat and Mass Transfer, 2015, 82: 490-502. doi: 10.1016/j.ijheatmasstransfer.2014.11.019
|
[8] |
SEO G H, JEUN G, KIM S J. Pool boiling heat transfer characteristics of zircaloy and SiC claddings in deionized water at low pressure[J]. Experimental Thermal and Fluid Science, 2015, 64: 42-53. doi: 10.1016/j.expthermflusci.2015.01.017
|
[9] |
KAM D H, LEE J H, LEE T, et al. Critical heat flux for SiC- and Cr-coated plates under atmospheric condition[J]. Annals of Nuclear Energy, 2015, 76: 335-342. doi: 10.1016/j.anucene.2014.09.046
|
[10] |
文青龙,曾谢虎,杜强,等. 常压下ATF锆合金包壳Cr涂层表面饱和池式沸腾气泡行为实验研究[J]. 核动力工程,2022, 43(5): 34-42.
|
[11] |
曾谢虎,陈志强,文青龙,等. Cr涂层锆包壳池式沸腾传热实验研究[J]. 核动力工程,2023, 44(2): 91-97.
|
[12] |
MURABAYASHI M, TANAKA S, TAKAHASHI Y. Thermal conductivity and heat capacity of zircaloy-2, −4 and unalloyed zirconium[J]. Journal of Nuclear Science and Technology, 1975, 12(10): 661-662. doi: 10.1080/18811248.1975.9733170
|
[13] |
FRITZ W. Maximum volume of vapor bubbles [J]. Physikalische Zeitschrift, 1935, 36: 379-384.
|