Citation: | Shen Yong, Zeng Xiehu, Duan Zhengang, Wen Qinglong, Yuan Bo, He Liang, Gao Shixin. Investigation on Corrosion Model of Cr-coated Zirconium Alloy Cladding[J]. Nuclear Power Engineering, 2024, 45(S1): 175-180. doi: 10.13832/j.jnpe.2024.S1.0175 |
[1] |
段振刚,陈平,周毅,等. 耐事故燃料用Cr涂层锆合金包壳研究进展[J]. 核技术,2022, 45(3): 030001. doi: 10.11889/j.0253-3219.2022.hjs.45.030001
|
[2] |
杨健乔,恽迪,刘俊凯. 铬涂层锆合金耐事故燃料包壳材料事故工况行为研究进展[J]. 材料导报,2022, 36(1): 20080283. doi: 10.11896/cldb.20080283
|
[3] |
BISCHOFF J, VAUGLIN C, DELAFOY C, et al. Development of Cr-coated zirconium alloy cladding for enhanced accident tolerance[C]. Boise: Topfuel 2016-Light Water Reactor (LWR) Fuel Performance Meeting, 2016.
|
[4] |
BISCHOFF J, DELAFOY C, VAUGLIN C, et al. AREVA NP's enhanced accident-tolerant fuel developments: focus on Cr-coated M5 cladding[J]. Nuclear Engineering and Technology, 2018, 50(2): 223-228. doi: 10.1016/j.net.2017.12.004
|
[5] |
MA H B, ZHANG H L, HU L J, et al. Corrosion behavior of Cr-coated zirconium alloy cladding in LiOH/H3BO3-containing water at 360℃[J]. Corrosion Science, 2023, 222: 111386. doi: 10.1016/j.corsci.2023.111386
|
[6] |
BRACHET J C, IDARRAGA-TRUJILLO I, LE FLEM M, et al. Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J]. Journal of Nuclear Materials, 2019, 517: 268-285. doi: 10.1016/j.jnucmat.2019.02.018
|
[7] |
WEI T G, ZHANG R Q, YANG H Y, et al. Microstructure, corrosion resistance and oxidation behavior of Cr-coatings on Zircaloy-4 prepared by vacuum arc plasma deposition[J]. Corrosion Science, 2019, 158: 108077. doi: 10.1016/j.corsci.2019.06.029
|
[8] |
KREJČÍ J, KABÁTOVÁ J, MANOCH F, et al. Development and testing of multicomponent fuel cladding with enhanced accidental performance[J]. Nuclear Engineering and Technology, 2020, 52(3): 597-609. doi: 10.1016/j.net.2019.08.015
|
[9] |
AIEXANDER VASILIEV. Analytical modelling of ATF chromium-coated Zr-based cladding high temperature oxidation in steam and steam-air atmosphere[C]. Bled: Proceedings of International Conference Nuclear Energy for New Europe, 2021.
|
[10] |
F GARZAROLLI, W JUNG, H SHOENFELD, et al. "Waterside Corrosion of Zircaloy Fuel Rods": EPRI NP-2789[R]. Palo: AG and Combustion engineering, Inc., Electric Power Research Institute, 1982.
|
[11] |
YOUNG D J, COHEN M. Oxidation behavior of chromium between 300° and 600℃[J]. Journal of the Electrochemical Society, 1977, 124(5): 769-774. doi: 10.1149/1.2133404
|
[12] |
WILLIAMS R K, GRAVES R S, MCELROY D L. Thermal conductivity of Cr2O3 in the vicinity of the Neel transition[J]. Journal of the American Ceramic Society, 1984, 67(7): C-151-C-152.
|
[13] |
Idarraga-Trujillo I, Flem M L, Brachet J C, et al. Assessment at CEA of coated nuclear fuel cladding for LWRs with increasing margins in LOCA and beyond LOCA conditions[C]//LWR Fuel Performance Meeting/TopFuel 2013. North Carolina: The American Nuclear Society, 2013.
|