Citation: | Xiang Fengrui, He Yanan, Wu Yingwei, Qiu Suizheng, Su Guanghui. Calculation and Analysis of Multiscale Coupling of Dispersion Plate-type Fuel[J]. Nuclear Power Engineering, 2024, 45(S2): 93-101. doi: 10.13832/j.jnpe.2024.S2.0093 |
[1] |
DENG Y B, WU Y W, ZHANG D L, et al. Thermal-mechanical coupling behavior analysis on metal-matrix dispersed plate-type fuel[J]. Progress in Nuclear Energy, 2017, 95: 8-22. doi: 10.1016/j.pnucene.2016.11.007
|
[2] |
ZHAO Y M, GONG X, DING S R, et al. A numerical method for simulating the non-homogeneous irradiation effects in full-sized dispersion nuclear fuel plates[J]. International Journal of Mechanical Sciences, 2014, 81: 174-183. doi: 10.1016/j.ijmecsci.2014.02.012
|
[3] |
严晓青. 弥散型核燃料板辐照力学行为的数值模拟[D]. 上海: 复旦大学,2009.
|
[4] |
JEONG G Y, KIM Y S, PARK J. Analytical local stress model for UMo/Al dispersion fuel[J]. Journal of Nuclear Materials, 2020, 528: 151881. doi: 10.1016/j.jnucmat.2019.151881
|
[5] |
JEONG G Y, KIM Y S, SOHN D S. Mechanical analysis of UMo/Al dispersion fuel[J]. Journal of Nuclear Materials, 2015, 466: 509-521.
|
[6] |
REST J, HOFMAN G L. DART model for irradiation-induced swelling of uranium silicide dispersion fuel elements[J]. Nuclear Technology, 1999, 126(1): 88-101. doi: 10.13182/NT99-A2960
|
[7] |
DAVIS L C, ALLISON J E. Micromechanics effects in creep of metal-matrix composites[J]. Metallurgical and Materials Transactions A, 1995, 26(12): 3081-3089. doi: 10.1007/BF02669438
|
[8] |
KRAJEWSKI P E, ALLISON J E, JONES J W. The effect of SiC particle reinforcement on the creep behavior of 2080 aluminum[J]. Metallurgical and Materials Transactions A, 1997, 28(3): 611-620. doi: 10.1007/s11661-997-0046-1
|
[9] |
ZHANG J, WANG H Y, WEI H Y, et al. Modelling of effective irradiation swelling for inert matrix fuels[J]. Nuclear Engineering and Technology, 2021, 53(8): 2616-2628. doi: 10.1016/j.net.2021.02.019
|