Citation: | Su Danke, Pan Xiaoqiang, Lu Yonghong, Yang Jing, Wang Ting, Duan Miaomiao. Effect of Sintering Process on Densification of UN-30%U3Si2 Pellets[J]. Nuclear Power Engineering, 2025, 46(1): 175-182. doi: 10.13832/j.jnpe.2025.01.0175 |
[1] |
张喜燕. UO2-锆合金化学反应条件下的包壳水侧氧化动力学[J]. 核科学与工程,1994, 14(3): 262-265.
|
[2] |
ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: A perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379. doi: 10.1016/j.jnucmat.2013.12.005
|
[3] |
KOO Y H, YANG J H, PARK J Y, et al. KAERI’s development of LWR accident-tolerant fuel[J]. Nuclear Technology, 2014, 186(2): 295-304. doi: 10.13182/NT13-89
|
[4] |
KIM D J, KIM K S, KIM D S, et al. Development status of microcell UO2 pellet for accident-tolerant fuel[J]. Nuclear Engineering and Technology, 2018, 50(2): 253-258. doi: 10.1016/j.net.2017.12.008
|
[5] |
ZHOU W, ZHOU W Z. Enhanced thermal conductivity accident tolerant fuels for improved reactor safety – A comprehensive review[J]. Annals of Nuclear Energy, 2018, 119: 66-86. doi: 10.1016/j.anucene.2018.04.040
|
[6] |
陆永洪,贾代坤,粟丹科,等. 真空烧结U3Si2燃料芯块的微观组织与导热性能[J]. 粉末冶金材料科学与工程,2022, 27(4): 436-441.
|
[7] |
MATTHEWS R B, CHIDESTER K M, HOTH C W, et al. Fabrication and testing of uranium nitride fuel for space power reactors[J]. Journal of Nuclear Materials, 1988, 151(3): 345.
|
[8] |
YAPICI H, İPEK O, ÖZCEYHAN V, et al. Analysis of the rejuvenation performance of hybrid blankets by using uranium fuels (UN, UC, UO2, U3Si2) and different coolants for various volume fraction[J]. Annals of Nuclear Energy, 2000, 27(4): 279-294. doi: 10.1016/S0306-4549(99)00058-4
|
[9] |
GONZALES A, WATKINS J K, WAGNER A R, et al. Challenges and opportunities to alloyed and composite fuel architectures to mitigate high uranium density fuel oxidation: uranium silicide[J]. Journal of Nuclear Materials, 2021, 553: 153026. doi: 10.1016/j.jnucmat.2021.153026
|
[10] |
WOOD E S, WHITE J T, GROTE C J, et al. U3Si2 behavior in H2O: Part I, flowing steam and the effect of hydrogen[J]. Journal of Nuclear Materials, 2018, 501: 404-412. doi: 10.1016/j.jnucmat.2018.01.002
|
[11] |
REST J. A model for fission-gas-bubble behavior in amorphous uranium silicide compounds[J]. Journal of Nuclear Materials, 2004, 325(2-3): 107-117. doi: 10.1016/j.jnucmat.2003.11.008
|
[12] |
KIM Y S, HOFMAN G L, REST J, et al. Temperature and dose dependence of fission-gas-bubble swelling in U3Si2[J]. Journal of Nuclear Materials, 2009, 389(3): 443-449. doi: 10.1016/j.jnucmat.2009.02.037
|
[13] |
XIONG Q W, QIAN L B, SONG G L, et al. Realistic performance assessment of FeCrAl-UN/U3Si2 accident tolerant fuel under loss-of-coolant accident scenario[J]. Reliability Engineering & System Safety, 2024, 243: 109847.
|
[14] |
HARP J M, LESSING P A, HOGGAN R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation[J]. Journal of Nuclear Materials, 2015, 466: 728-738. doi: 10.1016/j.jnucmat.2015.06.027
|
[15] |
JOHNSON K D, RAFTERY A M, LOPES D A, et al. Fabrication and microstructural analysis of UN-U3Si2 composites for accident tolerant fuel applications[J]. Journal of Nuclear Materials, 2016, 477: 18-23. doi: 10.1016/j.jnucmat.2016.05.004
|
[16] |
JOHNSON K D, WALLENIUS J, JOLKKONEN M, et al. Spark plasma sintering and porosity studies of uranium nitride[J]. Journal of Nuclear Materials, 2016, 473: 13-17. doi: 10.1016/j.jnucmat.2016.01.037
|
[17] |
GONG B W, KARDOULAKI E, YANG K, et al. UN and U3Si2 composites densified by spark plasma sintering for accident-tolerant fuels[J]. Ceramics International, 2022, 48(8): 10762-10769. doi: 10.1016/j.ceramint.2021.12.292
|