Advance Search
Volume 46 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Su Danke, Pan Xiaoqiang, Lu Yonghong, Yang Jing, Wang Ting, Duan Miaomiao. Effect of Sintering Process on Densification of UN-30%U3Si2 Pellets[J]. Nuclear Power Engineering, 2025, 46(1): 175-182. doi: 10.13832/j.jnpe.2025.01.0175
Citation: Su Danke, Pan Xiaoqiang, Lu Yonghong, Yang Jing, Wang Ting, Duan Miaomiao. Effect of Sintering Process on Densification of UN-30%U3Si2 Pellets[J]. Nuclear Power Engineering, 2025, 46(1): 175-182. doi: 10.13832/j.jnpe.2025.01.0175

Effect of Sintering Process on Densification of UN-30%U3Si2 Pellets

doi: 10.13832/j.jnpe.2025.01.0175
  • Received Date: 2024-04-21
  • Rev Recd Date: 2024-06-12
  • Publish Date: 2025-02-15
  • In this paper, UN-30%U3Si2 composite fuel pellets with 30wt.%U3Si2 content were prepared based on powder metallurgy technology. The influence of sintering atmosphere, sintering temperature, sintering time and other sintering processes on the sintering density of pellets was studied. The densification process was analyzed mainly through the chemical composition, phase composition and microstructure changes of pellets. The results show that vacuum sintering of UN-30%U3Si2 composite fuel pellets is more favorable to densification than argon atmosphere sintering. With the increase of sintering temperature (1600~1675°C), the density increases gradually, up to 97%T.D. When the sintering temperature is higher than the melting point of U3Si2, with the increase of temperature, the U3Si2 phase suffers losses and volatilization during the high vacuum sintering process, and the N element tends to diffuse to the U3Si2 phase, forming the unknown USixNy phase. The increase of sintering temperature or the extension of sintering time is conducive to the formation of coating of U3Si2 relative to UN phase.

     

  • loading
  • [1]
    张喜燕. UO2-锆合金化学反应条件下的包壳水侧氧化动力学[J]. 核科学与工程,1994, 14(3): 262-265.
    [2]
    ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: A perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379. doi: 10.1016/j.jnucmat.2013.12.005
    [3]
    KOO Y H, YANG J H, PARK J Y, et al. KAERI’s development of LWR accident-tolerant fuel[J]. Nuclear Technology, 2014, 186(2): 295-304. doi: 10.13182/NT13-89
    [4]
    KIM D J, KIM K S, KIM D S, et al. Development status of microcell UO2 pellet for accident-tolerant fuel[J]. Nuclear Engineering and Technology, 2018, 50(2): 253-258. doi: 10.1016/j.net.2017.12.008
    [5]
    ZHOU W, ZHOU W Z. Enhanced thermal conductivity accident tolerant fuels for improved reactor safety – A comprehensive review[J]. Annals of Nuclear Energy, 2018, 119: 66-86. doi: 10.1016/j.anucene.2018.04.040
    [6]
    陆永洪,贾代坤,粟丹科,等. 真空烧结U3Si2燃料芯块的微观组织与导热性能[J]. 粉末冶金材料科学与工程,2022, 27(4): 436-441.
    [7]
    MATTHEWS R B, CHIDESTER K M, HOTH C W, et al. Fabrication and testing of uranium nitride fuel for space power reactors[J]. Journal of Nuclear Materials, 1988, 151(3): 345.
    [8]
    YAPICI H, İPEK O, ÖZCEYHAN V, et al. Analysis of the rejuvenation performance of hybrid blankets by using uranium fuels (UN, UC, UO2, U3Si2) and different coolants for various volume fraction[J]. Annals of Nuclear Energy, 2000, 27(4): 279-294. doi: 10.1016/S0306-4549(99)00058-4
    [9]
    GONZALES A, WATKINS J K, WAGNER A R, et al. Challenges and opportunities to alloyed and composite fuel architectures to mitigate high uranium density fuel oxidation: uranium silicide[J]. Journal of Nuclear Materials, 2021, 553: 153026. doi: 10.1016/j.jnucmat.2021.153026
    [10]
    WOOD E S, WHITE J T, GROTE C J, et al. U3Si2 behavior in H2O: Part I, flowing steam and the effect of hydrogen[J]. Journal of Nuclear Materials, 2018, 501: 404-412. doi: 10.1016/j.jnucmat.2018.01.002
    [11]
    REST J. A model for fission-gas-bubble behavior in amorphous uranium silicide compounds[J]. Journal of Nuclear Materials, 2004, 325(2-3): 107-117. doi: 10.1016/j.jnucmat.2003.11.008
    [12]
    KIM Y S, HOFMAN G L, REST J, et al. Temperature and dose dependence of fission-gas-bubble swelling in U3Si2[J]. Journal of Nuclear Materials, 2009, 389(3): 443-449. doi: 10.1016/j.jnucmat.2009.02.037
    [13]
    XIONG Q W, QIAN L B, SONG G L, et al. Realistic performance assessment of FeCrAl-UN/U3Si2 accident tolerant fuel under loss-of-coolant accident scenario[J]. Reliability Engineering & System Safety, 2024, 243: 109847.
    [14]
    HARP J M, LESSING P A, HOGGAN R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation[J]. Journal of Nuclear Materials, 2015, 466: 728-738. doi: 10.1016/j.jnucmat.2015.06.027
    [15]
    JOHNSON K D, RAFTERY A M, LOPES D A, et al. Fabrication and microstructural analysis of UN-U3Si2 composites for accident tolerant fuel applications[J]. Journal of Nuclear Materials, 2016, 477: 18-23. doi: 10.1016/j.jnucmat.2016.05.004
    [16]
    JOHNSON K D, WALLENIUS J, JOLKKONEN M, et al. Spark plasma sintering and porosity studies of uranium nitride[J]. Journal of Nuclear Materials, 2016, 473: 13-17. doi: 10.1016/j.jnucmat.2016.01.037
    [17]
    GONG B W, KARDOULAKI E, YANG K, et al. UN and U3Si2 composites densified by spark plasma sintering for accident-tolerant fuels[J]. Ceramics International, 2022, 48(8): 10762-10769. doi: 10.1016/j.ceramint.2021.12.292
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (23) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return