Advance Search
Volume 46 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Li Hui, Xiong Min, Wang Jianhua, Ding Ziang. Study on the Influence Range of Gas Cloud Explosion Around Nuclear Power Plant[J]. Nuclear Power Engineering, 2025, 46(1): 254-258. doi: 10.13832/j.jnpe.2025.01.0254
Citation: Li Hui, Xiong Min, Wang Jianhua, Ding Ziang. Study on the Influence Range of Gas Cloud Explosion Around Nuclear Power Plant[J]. Nuclear Power Engineering, 2025, 46(1): 254-258. doi: 10.13832/j.jnpe.2025.01.0254

Study on the Influence Range of Gas Cloud Explosion Around Nuclear Power Plant

doi: 10.13832/j.jnpe.2025.01.0254
  • Received Date: 2024-04-09
  • Rev Recd Date: 2024-08-08
  • Publish Date: 2025-02-15
  • Among all kinds of accident hazard factors around the nuclear power plant, the consequence of explosion shock wave overpressure is more serious. In the nuclear safety guidelines, the TNT equivalent method is used to evaluate the overpressure of explosion shock wave, and there is no calculation model related to gas cloud explosion. By analyzing the Trinitrotoluene (TNT) equivalent method, the Netherlands Organization for Applied Scientific Research (TNO) model and the Baker-Strehlow-Tang (BST) model, this paper evaluates the applicability of the three models. The results show that the calculation results of TNT equivalent method are conservative, while the BST model can accurately evaluate the impact range of explosion shock wave overpressure of natural gas pipelines around the nuclear power plant. According to the calculation results of the BST model, the shock wave overpressure caused by the accidental explosion of three typical pipelines has little effect on the nuclear power plant.

     

  • loading
  • [1]
    中国国家核安全局. 核电厂厂址选择的外部人为事件: HAD 101/04[S]. 北京: 国家核安全局,1989: 451-484.
    [2]
    HELD M. TNT-equivalent[J]. Propellants, Explosives, Pyrotechnics, 1983, 8(5): 158-167. doi: 10.1002/prep.19830080507
    [3]
    STREHLOW R A. Blast waves generated by constant velocity flames: a simplified approach[J]. Combustion and Flame, 1975, 24: 257-261. doi: 10.1016/0010-2180(75)90155-8
    [4]
    KUHL A L, KAMEL M M, OPPENHEIM A K. Pressure waves generated by steady flames[J]. Symposium (International) on Combustion, 1973, 14(1): 1201-1215. doi: 10.1016/S0082-0784(73)80108-0
    [5]
    GUIRAO C M, BACH G G, LEE J H. Pressure waves generated by spherical flames[J]. Combustion and Flame, 1976, 27: 341-351. doi: 10.1016/0010-2180(76)90039-0
    [6]
    VAN DEN BOSCH C J H. Methods for the calculation of physical effects[M]. The Hague, Netherlands: Committee for the Prevention of Disasters, 2005: 5.39-5.44.
    [7]
    VAN DEN BERG AC, EGGEN MM. Guidance of the application of the multi-energy method[C]//The 2nd International Specialist Meeting on Fuel Air Explosions. Bergen, Norway, 1996: 6.
    [8]
    AHMAD A M, RASHID Z A, ALIAS A B, et al. Predicting blast overpressure caused by vapour cloud explosion at external vicinity of chemical processing plant[J]. Advanced Materials Research, 2015, 1113: 388-397. doi: 10.4028/www.scientific.net/AMR.1113.388
    [9]
    张国顺. 燃烧爆炸危险与安全技术[M]. 北京: 中国电力出版社,2003: 566.
    [10]
    国家能源局. 核电厂外部人为事件调查与评价技术规范: NB/T 20200[S]. 北京: 国家能源局,2013: 11.
    [11]
    全国安全生产标准化技术委员化学品安全分技术委员会. 中国标准书号: AQ/T 3046-2013[S]. 北京: 中国标准出版社,2013: 43-45.
    [12]
    李明智. 开放空间大尺度可燃气云爆燃机理及特征研究[D]. 北京: 北京理工大学,2019.
    [13]
    生态环境部. 建设项目环境风险评价技术导则: HJ 169[S]. 北京: 中国环境科学出版社,2018: 8.
    [14]
    HAYNES W M. CRC handbook of chemistry and physics[M]. Boca Raton: CRC Press, 2016: 2670.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(5)

    Article Metrics

    Article views (16) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return