Advance Search
Volume 42 Issue S2
Dec.  2021
Turn off MathJax
Article Contents
Yan Linfeng, Wu Xinci. Effect of Different Initial Temperatures of IRWST on Heat Exchange Performance of Passive Residual Heat Removal Heat Exchanger[J]. Nuclear Power Engineering, 2021, 42(S2): 20-24. doi: 10.13832/j.jnpe.2021.S2.0020
Citation: Yan Linfeng, Wu Xinci. Effect of Different Initial Temperatures of IRWST on Heat Exchange Performance of Passive Residual Heat Removal Heat Exchanger[J]. Nuclear Power Engineering, 2021, 42(S2): 20-24. doi: 10.13832/j.jnpe.2021.S2.0020

Effect of Different Initial Temperatures of IRWST on Heat Exchange Performance of Passive Residual Heat Removal Heat Exchanger

doi: 10.13832/j.jnpe.2021.S2.0020
  • Received Date: 2021-07-19
  • Accepted Date: 2021-12-06
  • Rev Recd Date: 2021-09-30
  • Publish Date: 2021-12-29
  • CFD computations were conducted to investigate the effect of different initial temperatures of the AP1000 In-containment Refueling Water Storage Tank (IRWST) on the heat exchange performance of Passive Residual Heat Removal heat exchanger (PRHR HX), and to discuss possible benefits of adjusting the water temperature of IRWST. The standard $k - \varepsilon $ model is selected for the turbulence model and the SIMPLEC algorithm is selected for the correction of pressure and speed. The results show that reducing the initial temperature of IRWST can improve the heat exchange performance of PRHR HX. In addition, the initial temperature of IRWST is directly proportional to the average temperature at the tube bundle outlet. Furthermore, the relative temperature drop at the inlet and outlet of the tube bundle increases linearly with the decrease of the initial temperature of IRWST. On this basis, the following research and development directions are prospected, and the following design thought is put forward: after an accident, first increase the IRWST water temperature to reduce the thermal stress damage and fluid vibration of the core components, and then slowly reduce the IRWST water temperature to maintain the heat exchange capacity, so that it not only keeps the integrity of the reactor core, does not damage the reactor core components, but also can maintain the long-term cooling of the reactor core.

     

  • loading
  • [1]
    林诚格. 非能动安全先进核电厂AP1000[M]. 北京: 原子能出版社, 2008.
    [2]
    LI Y Q, CHANG H J, LI D L, et al. Analytical studies of long-term IRWST injection core cooling under small break LOCA in passive safety PWR[J]. Annals of Nuclear Energy, 2016, 88: 218-236.
    [3]
    杨江, 李盛林. AP1000核电厂事故瞬态进程进行研究[J/OL]. 中国核电: 1-6. [2020-10-14]. http://kns.cnki.net/kcms/detail/11.5660.TL.20180611.0650.012.html.
    [4]
    SIERCHUŁA J. Analysis of passive residual heat removal system in AP1000 nuclear power plant[J]. IOP Conference Series:Earth and Environmental Science, 2019, 214: 012095. doi: 10.1088/1755-1315/214/1/012095
    [5]
    黄志刚,张妍,彭传新,等. 换料水箱初始水温对非能动余热排出系统运行特性影响试验研究[J]. 核动力工程,2017, 38(5): 14-17.
    [6]
    张鹏. 基于CFD方法的非能动余热排出换热器数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2014.
    [7]
    潘新新. 非能动余热交换器瞬态换热特性数值模拟及敏感性分析[J]. 核动力工程,2010, 31(S1): 97-102.
    [8]
    薛若军,邓程程,李朝君,等. 自然循环换热器壳侧传热及流动的数值模拟[J]. 原子能科学技术,2012, 46(2): 192-198.
    [9]
    丁祖荣. 流体力学[M]. 第二版. 北京: 高等教育出版社, 2013.
    [10]
    INC A. ANSYS fluent theory guide[Z]. 2018
    [11]
    薛若军,邓程程,彭敏俊. 非能动余热排出热交换器数值模拟[J]. 原子能科学技术,2010, 44(4): 429-435.
    [12]
    夏会宁. AP1000核电厂非能动余热排出热交换器数值模拟及其设计优化[D]. 保定: 华北电力大学, 2014.
    [13]
    王福军. 计算流体动力学分析[M]. 北京: 清华大学出版社, 2004.
    [14]
    贾斌,靖剑平,乔雪冬,等. 基于CFD方法的非能动余热排出系统数值模拟[J]. 核安全,2013, 12(3): 37-41. doi: 10.3969/j.issn.1672-5360.2013.03.009
    [15]
    张钰浩. AP1000内置换料水箱热工水力特性研究[D]. 北京: 华北电力大学(北京), 2017.
    [16]
    JIA B, JING J P, QIAO X D, et al. Numerical simulation of PRHR system based on CFD[J]. Journal of Applied Mathematics and Physics, 2013, 1(6): 74-81. doi: 10.4236/jamp.2013.16015
    [17]
    张红岩,师二兵,方成跃. 二回路非能动余热排出系统设计要素分析[J]. 中国舰船研究,2017, 12(3): 98-104. doi: 10.3969/j.issn.1673-3185.2017.03.014
    [18]
    段倩妮,王成龙,张大林,等. 余热排出系统中的热管设计及传热性能研究[J]. 原子能科学技术,2021, 55(6): 1000-1006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (220) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return