2021, 42(S2): 119-123.
doi: 10.13832/j.jnpe.2021.S2.0119
Abstract:
This paper first analyzes the models of CISER2.0, a code of In-vessel retention (IVR) strategy effectiveness analysis. The CISER2.0 code consists of four three-layer melting pool models: Esmaili & Khatib-Rahbar model, Seiler model, Salay & Fichot model and self-developed model. It is found that compared with Esmaili & Khatib-Rahbar model, Seiler model is more conservative; Although the Salay & Fichot model is based on thermodynamic theory in calculating the composition of oxide layer and heavy metal layer, the method of user hypothesis is adopted in determining the composition of light metal layer, and it is considered that the light metal layer is formed automatically at the top of the melting pool; The self-developed melting pool structure model calculates the structure of the melting pool based on the accident process. Compared with the Salay & Fichot model, it can automatically calculate the composition of the light metal layer. In this paper, taking the 1000MW advanced reactor as an object, the morphology of the melting pool formed in the lower chamber after the accident of small break in the cold section of the main pipe is calculated based on the different layering models of the melting pool in the code. However, the content of stainless steel in the melt of this research object is too small to form a three-layer structure that meets the Seiler model. In addition, the heat flux distribution on the outer wall of the pressure vessel is given according to the calculated three-layer melting pool structure. The results show that the difference of melt composition in the corresponding layer of each melting pool leads to the difference of heat flux distribution on the outside of the pressure vessel. Even if the corresponding layer thickness of Esmaili & Khatib-Rahbar model and Salay & Fichot model is set to be basically the same, the difference of heat flux distribution between them is large. At the same time, different from the previous three models, the self-developed model also gives the transient heat flux of the outer wall of the pressure vessel when the melt falls down the chamber.