Citation: | Zhang Cheng, Yan Xiao, Peng Shinian, Yuan Dewen, Liu Wenxing. Research on Adsorption and Energy Storage of Refrigerants R1234yf and R32 in MOF-74[J]. Nuclear Power Engineering, 2022, 43(3): 1-6. doi: 10.13832/j.jnpe.2022.03.0001 |
[1] |
WU C, XU X X, LI Q B, et al. Performance assessment and optimization of a novel geothermal combined cooling and power system integrating an organic flash cycle with an ammonia-water absorption refrigeration cycle[J]. Energy Conversion and Management, 2021, 227: 113562. doi: 10.1016/j.enconman.2020.113562
|
[2] |
陈晓雪,刘朝,李期斌,等. 混合工质(R227ea/R245fa)有机朗肯循环的动态特性研究[J]. 工程热物理学报,2020, 41(7): 1604-1611.
|
[3] |
CHEN X X, LIU C, LI Q B, et al. Dynamic behavior of supercritical organic Rankine cycle using zeotropic mixture working fluids[J]. Energy, 2020, 191: 116576. doi: 10.1016/j.energy.2019.116576
|
[4] |
WANG S K, LIU C, REN J Z, et al. Carbon footprint analysis of organic Rankine cycle system using zeotropic mixtures considering leak of fluid[J]. Journal of Cleaner Production, 2019, 239: 118095. doi: 10.1016/j.jclepro.2019.118095
|
[5] |
SUN Z, LIU C, XU X X, et al. Comparative carbon and water footprint analysis and optimization of Organic Rankine Cycle[J]. Applied Thermal Engineering, 2019, 158: 113769. doi: 10.1016/j.applthermaleng.2019.113769
|
[6] |
CHEN X X, LIU C, LI Q B, et al. Dynamic analysis and control strategies of Organic Rankine Cycle system for waste heat recovery using zeotropic mixture as working fluid[J]. Energy Conversion and Management, 2019, 192: 321-334.
|
[7] |
CAI S Y, LI Q B, LIU C, et al. Evaporation of R32/R152a mixtures on the Pt surface: a molecular dynamics study[J]. International Journal of Refrigeration, 2020, 113: 156-163. doi: 10.1016/j.ijrefrig.2020.02.007
|
[8] |
景玲玲,冯卉,郭晓林. 基加利修正案情况介绍[J]. 聚氨酯工业,2017, 32(S1): 17-18.
|
[9] |
王博,张伟,马洋博,等. 第四代制冷剂HFO-1234yf[J]. 化工新型材料,2010, 38(8): 30-32,40. doi: 10.3969/j.issn.1006-3536.2010.08.011
|
[10] |
马一太,王派,李敏霞,等. 温室效应及第四代制冷工质[J]. 制冷技术,2017, 37(5): 8-13. doi: 10.3969/j.issn.2095-4468.2017.05.002
|
[11] |
HU J Y, LIU C, LIU L, et al. Thermal energy storage of R1234yf, R1234ze, R134a and R32/MOF-74 nanofluids: a molecular simulation study[J]. Materials, 2018, 11(7): 1164. doi: 10.3390/ma11071164
|
[12] |
HU J Y, LIU C, LI Q B, et al. Molecular simulation of thermal energy storage of mixed CO2/IRMOF-1 nanoparticle nanofluid[J]. International Journal of Heat and Mass Transfer, 2018, 125: 1345-1348. doi: 10.1016/j.ijheatmasstransfer.2018.04.162
|
[13] |
SUMIDA K, ROGOW D L, MASON J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 724-781. doi: 10.1021/cr2003272
|
[14] |
BLOCH E D, HUDSON M R, MASON J A, et al. Reversible CO binding enables tunable CO/H2 and CO/N2 separations in metal-organic frameworks with exposed divalent metal cations[J]. Journal of the American Chemical Society, 2014, 136(30): 10752-10761. doi: 10.1021/ja505318p
|
[15] |
MCGRAIL B P, THALLAPALLY P K, BLANCHARD J, et al. Metal-organic heat carrier nanofluids[J]. Nano Energy, 2013, 2(5): 845-855. doi: 10.1016/j.nanoen.2013.02.007
|
[16] |
NIST. NIST standard reference database[EB/OL].(2018-09-18)[2021-04-10]. https://www.nist.gov/srd.
|
[17] |
FRENKEL D, SMIT B. Understanding molecular simulation: from algorithms to applications[M]. 2nd ed. San Diego: Academic Press, 2002: 66.
|
[18] |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. doi: 10.1006/jcph.1995.1039
|
[19] |
RAPPE A K, CASEWIT C J, COLWELL K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of the American Chemical Society, 1992, 114(25): 10024-10035. doi: 10.1021/ja00051a040
|
[20] |
CAI S Y, WU C, LI X X, et al. Effects of lubricant on evaporation and boiling processes of R1234ze(E): a molecular dynamics study[J]. Applied Thermal Engineering, 2021, 193: 117009. doi: 10.1016/j.applthermaleng.2021.117009
|
[21] |
LI Q B, XIAO Y T, SHI X Y, et al. Rapid evaporation of water on graphene/graphene-oxide: a molecular dynamics study[J]. Nanomaterials, 2017, 7(9): 265. doi: 10.3390/nano7090265
|
[22] |
LI Q B, WANG M, LIANG Y P, et al. Molecular dynamics simulations of aggregation of copper nanoparticles with different heating rates[J]. Physica E:Low-dimensional Systems and Nanostructures, 2017, 90: 137-142. doi: 10.1016/j.physe.2017.03.024
|
[23] |
HU J Y, LIU C, LI Q B, et al. Thermal energy storage of R1234yf/MOF-5 and R1234ze(Z)/MOF-5 nanofluids: a molecular simulation study[J]. Energy Procedia, 2019, 158: 4604-4610. doi: 10.1016/j.egypro.2019.01.870
|
[24] |
WANG S K, ZHANG L, LIU C, et al. Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery[J]. Energy, 2021, 231: 120956. doi: 10.1016/j.energy.2021.120956
|
[25] |
BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690. doi: 10.1063/1.448118
|
[26] |
LEI G P, LI Q B, LIU H T, et al. Selective adsorption of CO2 by Hex-star phosphorene from natural gas: combining molecular simulation and real adsorbed solution theory[J]. Chemical Engineering Science, 2021, 231: 116283. doi: 10.1016/j.ces.2020.116283
|
[27] |
李期斌,蔡守银,刘朝. R1234yf,R1234ze(z),R32及其混合工质在Co-MOF-74中吸附储能的分子模拟[J]. 科学通报,2020, 65(7): 633-640.
|