Advance Search
Volume 43 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Hu Chongju, Yu Dali, He Meisheng, Li Taosheng, Yu Jie. Design and Heat Transfer Performance Analysis of Ultra-High Temperature Lithium Heat Pipe[J]. Nuclear Power Engineering, 2022, 43(3): 21-27. doi: 10.13832/j.jnpe.2022.03.0021
Citation: Hu Chongju, Yu Dali, He Meisheng, Li Taosheng, Yu Jie. Design and Heat Transfer Performance Analysis of Ultra-High Temperature Lithium Heat Pipe[J]. Nuclear Power Engineering, 2022, 43(3): 21-27. doi: 10.13832/j.jnpe.2022.03.0021

Design and Heat Transfer Performance Analysis of Ultra-High Temperature Lithium Heat Pipe

doi: 10.13832/j.jnpe.2022.03.0021
  • Received Date: 2021-04-27
  • Rev Recd Date: 2021-05-28
  • Publish Date: 2022-06-07
  • Ultra-high temperature lithium (Li) heat pipe cooled nuclear reactor has broad application prospects in the areas of deep-sea nuclear power and deep-space exploration due to its silence, small size and other advantages. In order to master the heat transfer characteristics of ultra-high temperature lithium heat pipe, the design of ultra-high temperature lithium heat pipe is carried out, and the Python program of ultra-high temperature lithium heat pipe is developed based on the thermal resistance grid method. On this basis, the heat transport performance of lithium heat pipe is analyzed. By comparing with other existing models and experimental data, the accuracy of the model developed in this paper is verified, and the ultra-high temperature lithium heat pipe designed in this paper is checked by using this program, and the influence of heat pipe structure on the transition time of ultra-high temperature lithium heat pipe to reach a new stable state under variable power condition is analyzed. The results show that the ultra-high temperature lithium heat pipe designed in this paper meets the design requirements; increasing the wall thickness and wick thickness increase the transition time; increasing the length of the condensation section is beneficial to reduce the transition time. The research in this paper provides the basis for the optimization design and safety analysis of the heat pipe reactor.

     

  • loading
  • [1]
    YUAN Y, SHAN J Q, ZHANG B, et al. Study on startup characteristics of heat pipe cooled and AMTEC conversion space reactor system[J]. Progress in Nuclear Energy, 2016, 86: 18-30. doi: 10.1016/j.pnucene.2015.10.002
    [2]
    SUN H, WANG C L, MA P, et al. Conceptual design and analysis of a multipurpose micro nuclear reactor power source[J]. Annals of Nuclear Energy, 2018, 121: 118-127. doi: 10.1016/j.anucene.2018.07.025
    [3]
    MCCLURE P, RAY, DIXON D, et al. Mobile heat pipe cooled fast reactor system: US, 14/773, 405[P]. 2014-10-30.
    [4]
    FAGHRI A. Heat pipe science and technology[M]. Washington DC: Taylor & Francis, 1995: 41-55.
    [5]
    LIU X, ZHANG R, LIANG Y, et al. Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor[J]. Annals of Nuclear Energy, 2020, 142: 107412. doi: 10.1016/j.anucene.2020.107412
    [6]
    MCCLURE P R, POSTON D I, DASARI V R, et al. Design of megawatt power level heat pipe reactors: LA-UR-15-28840[R]. Los Alamos: Los Alamos National Lab, 2015.
    [7]
    张文文,刘逍,田文喜,等. 兆瓦级空间热管反应堆动力系统概念设计[J]. 原子能科学技术,2017, 51(12): 2160-2164. doi: 10.7538/yzk.2017.51.12.2160
    [8]
    赵蔚琳,庄骏. 碱金属热管轴向传热极限的研究[J]. 南京化工大学学报,1994(S1): 111-114.
    [9]
    于萍,张红,许辉,等. 高温钠热管再启动特性研究[J]. 中国电机工程学报,2015, 35(2): 404-410.
    [10]
    ZHOU R W, XIANG L, HAO P, et al. Thermal characteristics of the combined flat plate heat receiver in solar power tower plant[J]. Energy, 2018, 165: 275-289. doi: 10.1016/j.energy.2018.09.073
    [11]
    赵蔚琳,庄骏,张红. 水平放置高温热管翅起动性能分析[J]. 石油化工设备,2003, 32(4): 8-10. doi: 10.3969/j.issn.1000-7466.2003.04.003
    [12]
    王成龙,田文喜,苏光辉,等. 新概念熔盐堆非能动余热排出系统中钠热管的特性研究[J]. 原子能科学技术,2013, 47(12): 2254-2260. doi: 10.7538/yzk.2013.47.12.2254
    [13]
    牛涛,张艳苓,侯红亮,等. 高温热管性能分析与试验[J]. 航空学报,2016, 37(S1): 59-65.
    [14]
    冯踏青. 液态金属高温热管的理论和试验研究[D]. 杭州: 浙江大学, 1998.
    [15]
    王成龙,田文喜,苏光辉,等. 熔盐堆新型非能动余热排出系统中高温热管的数值分析[J]. 核动力工程,2014, 35(1): 32-35.
    [16]
    贾先剑,郭航,郭青,等. 不同加热温度下钠钾合金热管传热性能[J]. 应用能源技术,2016(3): 7-11. doi: 10.3969/j.issn.1009-3230.2016.03.002
    [17]
    柴宝华,杜开文,卫光仁,等. 钾热管稳态数值模拟分析[J]. 原子能科学技术,2010, 44(5): 553-557.
    [18]
    卫光仁,柴宝华,魏国锋,等. 干道式高温热管的传热性能试验研究[J]. 原子能科学技术,2014, 48(3): 447-452. doi: 10.7538/yzk.2014.48.03.0447
    [19]
    韩冶,柴宝华,卫光仁,等. 有芯和无芯高温重力钾热管启动性能试验研究[J]. 原子能科学技术,2019, 53(1): 38-44.
    [20]
    田智星,刘逍,王成龙,等. 高温钾热管稳态运行传热特性研究[J]. 原子能科学技术,2020, 54(10): 1771-1778.
    [21]
    刘逍,田智星,王成龙,等. 高温热管传热特性实验研究[J]. 核动力工程,2020, 41(S1): 106-111.
    [22]
    DOS SANTOS BERNARDES M A. Developments in heat transfer[M]. Rijeka: InTech, 2011: 508-510.
    [23]
    REAY D A, REAY K P, MCGLEN R J. Heat pipes theory design & applications[M]. Burlington: Elsevier, 2006: 116
    [24]
    CHI S W. 热管理论与实用[M]. 蒋章焰, 译. 北京: 科学出版社, 1981: 186-214
    [25]
    陈富财,钱益昊,罗英,等. 倾角对重力热管携带极限影响的实验研究[J]. 核动力工程,2020, 41(S2): 21-26.
    [26]
    庄骏, 张红. 热管技术及其工程应用[M]. 北京: 化学工业出版社, 2000: 31-66.
    [27]
    ZUO Z J, FAGHRI A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473-1484. doi: 10.1016/S0017-9310(97)00220-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (875) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return