Citation: | Zhang Shuanglei, Li Liangxing, Song Liming. Analysis and Optimization of Flow Field in an Axial Flow Lead-Bismuth Pump[J]. Nuclear Power Engineering, 2022, 43(3): 158-164. doi: 10.13832/j.jnpe.2022.03.0158 |
[1] |
DAMIANI L, REVETRIA R. New steam generation system for lead-cooled fast reactors, based on steam re-circulation through ejector[J]. Applied Energy, 2015(137): 292-300. doi: 10.1016/j.apenergy.2014.10.014
|
[2] |
DAMIANI L, PRATO A P, REVETRIA R. Innovative steam generation system for the secondary loop of “ALFRED” lead-cooled fast reactor demonstrator[J]. Applied Energy, 2014(121): 207-218. doi: 10.1016/j.apenergy.2014.02.014
|
[3] |
HEJZLAR P, TODREAS N E, SHWAGERAUS E, et al. Cross-comparison of fast reactor concepts with various coolants[J]. Nuclear Engineering and Design, 2009, 239(12): 2672-2691. doi: 10.1016/j.nucengdes.2009.07.007
|
[4] |
GROMOV B F, ORLOV Y I, MARTYNOV P N, et al. Proceedings of heavy liquid metal coolants in nuclear technology[Z]. HLMC, 1988, 98: 5-9.
|
[5] |
潘瑾宜,杨婷,钱虹. 小型模块化反应堆冷却剂平均温度的预测控制方法[J]. 核动力工程,2020, 41(3): 62-67.
|
[6] |
SHI L T, BING T, WANG C L, et al. Experimental investigation of gas lift pump in a lead-bismuth eutectic loop[J]. Nuclear Engineering and Design, 2018, 330: 516-523. doi: 10.1016/j.nucengdes.2018.01.042
|
[7] |
左娟莉,田文喜,秋穗正,等. 铅铋合金冷却反应堆内气泡提升泵提升自然循环能力的理论研究[J]. 原子能科学技术,2013, 47(7): 1155-1161. doi: 10.7538/yzk.2013.47.07.1155
|
[8] |
KWAK J, KIM H R. Development of innovative reactor-integrated coolant system design concept for a small modular lead fast reactor[J]. International Journal of Energy Research, 2018, 42(13): 4197-4205. doi: 10.1002/er.4177
|
[9] |
卢永刚. 铅铋冷却快堆主循环泵优化设计与可靠性分析[D]. 镇江: 江苏大学, 2019.
|
[10] |
MANGIALARDO A, BORREANI W, LOMONACO G, et al. Numerical investigation on a jet pump evolving liquid lead for GEN-IV reactors[J]. Nuclear Engineering and Design, 2014(280): 608-618. doi: 10.1016/j.nucengdes.2014.09.028
|
[11] |
FERRINI M, BORREANI W, LOMONACO G, et al. Design by theoretical and CFD analyses of a multi-blade screw pump evolving liquid lead for a generation IV LFR[J]. Nuclear Engineering and Design, 2016, 297: 276-290. doi: 10.1016/j.nucengdes.2015.12.006
|
[12] |
张勇,何小冬,张杰,等. 铅铋泵原型机水力模型分析验证[J]. 通用机械,2018(11): 63-66. doi: 10.3969/j.issn.1671-7139.2018.11.021
|
[13] |
БЕЗНОСОВ А В, АНТОНЕНКОВ М А, БОКОВ П А, et al. Специфика циркуляционных насосов реакторных контуров со свинцовым и свинецвисмутовым теплоносителями[J]. Известия высших учебных заведений. Ядерная энергетика, 2009(4): 155-160.
|
[14] |
吴宜灿,王明煌,黄群英,等. 铅基反应堆研究现状与发展前景[J]. 核科学与工程,2015, 35(2): 213-221. doi: 10.3969/j.issn.0258-0918.2015.02.004
|
[15] |
潘中永,李晓俊,袁寿其,等. CFD技术在泵上的应用进展[J]. 水泵技术,2009(1): 1-6.
|
[16] |
王凯琳,李良星,张双雷,等. 轴流铅铋泵的设计及其水力性能分析[J]. 西安交通大学学报,2020, 54(11): 166-174.
|
[17] |
赵国群,虞松,王广春. 六面体网格自动划分和再划分算法[J]. 机械工程学报,2006, 42(3): 188-192. doi: 10.3321/j.issn:0577-6686.2006.03.033
|
[18] |
БЕЗНОСОВ А В, БОКОВА Т А, ЗУДИН А Д, et al. Экспериментальное исследование и отработка насосов для перекачки свинцового и свинец-висмутового теплоносителя для ядерных установок[J]. НГТУ им. Р. Е. Алексеева, 2017, 1(116): 117-128.
|
[19] |
沙毅,侯丽艳. 叶片厚度对轴流泵性能影响及内部流场分析[J]. 农业工程学报,2012, 28(18): 75-81. doi: 10.3969/j.issn.1002-6819.2012.18.012
|
[20] |
史缘缘,黄逸哲. 轴流泵流体激励涡旋涡核提取技术研究[J]. 装备制造技术,2018(3): 233-235, 238. doi: 10.3969/j.issn.1672-545X.2018.03.073
|
[21] |
王强磊,赖喜德,叶道星. 叶轮叶片厚度对混流式核主泵能量性能的影响[J]. 核动力工程,2020, 41(1): 28-32.
|