Advance Search
Zhou Yipeng, Men Jinfeng, Wang Xiaowei, Du Zhihui, Liang Chengqiang, Jia Mingchun. Study on the Adsorption of Co(Ⅱ) and Mn(Ⅱ) in Simulated Wastewater by ZIF-67[J]. Nuclear Power Engineering, 2022, 43(6): 209-216. doi: 10.13832/j.jnpe.2022.06.0209
Citation: Zhou Yipeng, Men Jinfeng, Wang Xiaowei, Du Zhihui, Liang Chengqiang, Jia Mingchun. Study on the Adsorption of Co(Ⅱ) and Mn(Ⅱ) in Simulated Wastewater by ZIF-67[J]. Nuclear Power Engineering, 2022, 43(6): 209-216. doi: 10.13832/j.jnpe.2022.06.0209

Study on the Adsorption of Co(Ⅱ) and Mn(Ⅱ) in Simulated Wastewater by ZIF-67

doi: 10.13832/j.jnpe.2022.06.0209
  • Received Date: 2021-11-16
  • Rev Recd Date: 2022-07-27
  • Publish Date: 2022-12-14
  • In order to develop an adsorbent with high efficiency and selectivity for long-lived activation products in radioactive liquid waste, metal-organic frameworks (MOFs) material ZIF-67 was prepared at room temperature, and the thermal stability test and structural characterization of the material were carried out. The influence of the initial pH values, adsorption time and initial concentration of the solution on the adsorption of Co(II) and Mn(II) by ZIF-67 was investigated for the first time. The results show that ZIF-67 is a microporous material with good hydrothermal stability. Under the conditions of pH=6.0, temperature of 30℃, and initial concentration of 500 mg/L, the saturated adsorption capacities of ZIF-67 for Co(II) and Mn(II) reached 305.63 mg/g and 197.43 mg/g, respectively. ZIF-67 has adsorption selectivity for Co(II), Mn(II) and Ni(II) in mixed metal ion solution. Therefore, ZIF-67 has a good application prospect in the treatment of activation products in actual radioactive liquid waste.

     

  • [1]
    陈小明, 张杰鹏. 金属-有机框架材料[M]. 北京: 化学工业出版社, 2017: 26-28.
    [2]
    LUAN Y, ZHENG N N, QI Y, et al. Development of a SO3H-functionalized UiO-66 metal-organic framework by postsynthetic modification and studies of its catalytic activities[J]. European Journal of Inorganic Chemistry, 2014, 2014(26): 4268-4272. doi: 10.1002/ejic.201402509
    [3]
    KIM S N, YANG S T, KIM J, et al. Post-synthesis functionalization of MIL-101 using diethylenetriamine: a study on adsorption and catalysis[J]. CrystEngComm, 2012, 14(12): 4142-4147. doi: 10.1039/c2ce06608d
    [4]
    ZHANG Z H, ZHANG J L, LIU J M, et al. Selective and competitive adsorption of azo dyes on the metal-organic framework ZIF-67[J]. Water, Air, & Soil Pollution, 2016, 227(12): 471.
    [5]
    杨清香,陈从涛,赵翠真,等. 类沸石咪唑酯骨架材料ZIF-67对重金属离子镉、铜和铅的吸附性能研究[J]. 功能材料,2020, 51(2): 2072-2077. doi: 10.3969/j.issn.1001-9731.2020.02.012
    [6]
    MAHMOODI N M, TAGHIZADEH M, TAGHIZADEH A, et al. Bio-based magnetic metal-organic framework nanocomposite: ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media[J]. Applied Surface Science, 2019, 480: 288-299. doi: 10.1016/j.apsusc.2019.02.211
    [7]
    LI X Y, GAO X Y, AI L H, et al. Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution[J]. Chemical Engineering Journal, 2015, 274: 238-246. doi: 10.1016/j.cej.2015.03.127
    [8]
    SU S Z, CHE R, LIU Q, et al. Zeolitic Imidazolate Framework-67: a promising candidate for recovery of uranium (VI) from seawater[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 547: 73-80.
    [9]
    DU X D, WANG C C, LIU J G, et al. Extensive and selective adsorption of ZIF-67 towards organic dyes: performance and mechanism[J]. Journal of Colloid and Interface Science, 2017, 506: 437-441. doi: 10.1016/j.jcis.2017.07.073
    [10]
    LI Y, ZHOU K, HE M, et al. Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption[J]. Microporous and Mesoporous Materials, 2016, 234: 287-292. doi: 10.1016/j.micromeso.2016.07.039
    [11]
    HU Z G, PENG Y W, KANG Z X, et al. A modulated hydrothermal (MHT) approach for the facile synthesis of UIO-66-Type MOFs[J]. Inorganic Chemistry, 2015, 54(10): 4862-4868. doi: 10.1021/acs.inorgchem.5b00435
    [12]
    HU G Z, ZHANG W, CHEN Y T, et al. Removal of boron from water by GO/ZIF-67 hybrid material adsorption[J]. Environmental Science and Pollution Research, 2020, 27(22): 28396-28407. doi: 10.1007/s11356-020-08018-6
    [13]
    LOPACHIN R M, GAVIN T, DECAPRIO A, et al. Application of the hard and soft, acids and bases (HSAB) theory to toxicant-target interactions[J]. Chemical Research in Toxicology, 2012, 25(2): 239-251. doi: 10.1021/tx2003257
    [14]
    GUO W L, CHEN R, LIU Y, et al. Preparation of ion-imprinted mesoporous silica SBA-15 functionalized with triglycine for selective adsorption of Co(II)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 436: 693-703. doi: 10.1016/j.colsurfa.2013.08.011
    [15]
    ZHU Q, LI Z K. Hydrogel-supported nanosized hydrous manganese dioxide: Synthesis, characterization, and adsorption behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water[J]. Chemical Engineering Journal, 2015, 281: 69-80. doi: 10.1016/j.cej.2015.06.068
    [16]
    LI H C, CAO X Y, ZHANG C, et al. Enhanced adsorptive removal of anionic and cationic dyes from single or mixed dye solutions using MOF PCN-222[J]. RSC Advances, 2017, 7(27): 16273-16281. doi: 10.1039/C7RA01647F
    [17]
    CRINI G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment[J]. Progress in Polymer Science, 2005, 30(1): 38-70. doi: 10.1016/j.progpolymsci.2004.11.002
    [18]
    YUAN G Y, TIAN Y, LIU J, et al. Schiff base anchored on metal-organic framework for Co (II) removal from aqueous solution[J]. Chemical Engineering Journal, 2017, 326: 691-699. doi: 10.1016/j.cej.2017.06.024
    [19]
    VIEGAS R M C, CAMPINAS M, COSTA H, et al. How do the HSDM and Boyd’s model compare for estimating intraparticle diffusion coefficients in adsorption processes[J]. Adsorption, 2014, 20(5-6): 737-746. doi: 10.1007/s10450-014-9617-9
    [20]
    HASSANZADEH M, GHAEMY M. Preparation of bio-based keratin-derived magnetic molecularly imprinted polymer nanoparticles for the facile and selective separation of bisphenol A from water[J]. Journal of Separation Science, 2018, 41(10): 2296-2304. doi: 10.1002/jssc.201701452
    [21]
    PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and thermal stability of Zeolitic Imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. doi: 10.1073/pnas.0602439103
    [22]
    JIANG S H, NIE C M, LIN D, et al. The relationship between inductive effect descriptor and the ionization potential for amines, alcohols, ethers, thio-alcohols and thio-ethers[J]. Journal of Molecular Science, 2007, 23(6): 410-415.
  • Relative Articles

    [1]Du Qiuwan, Liu Ming, Yan Xiao, Zhang Zhao, Zhang Cheng, Liu Wenxing, Yuan Dewen. Investigation on Static Characteristics of Self-lubricated Aerostatic Thrust Bearing of Organic Rankine Cycle Turbine Driven by Nuclear Heat[J]. Nuclear Power Engineering, 2025, 46(1): 289-296. doi: 10.13832/j.jnpe.2025.01.0289
    [2]Liu Guixiu, Yi Jingwei, Li Gen, Liang Tiebo, Fang Huawei, Chen Weixiong. Study on Control Strategy of Natural Circulation Lead-cooled Fast Reactor Coupled with S-CO2 Brayton Cycle[J]. Nuclear Power Engineering, 2023, 44(4): 138-147. doi: 10.13832/j.jnpe.2023.04.0138
    [3]Li Chao, Huang Junlin, Wang Lu, Zhou Keyi. Study on Molecular Dynamics of the Adsorption and Film Formation of Octadecylamine on Carbon Steel Surface[J]. Nuclear Power Engineering, 2023, 44(2): 203-209. doi: 10.13832/j.jnpe.2023.02.0203
    [4]Chen Laijie, Lu Chuan, Shen Xin, Yi Jingwei, Li Yang, Ouyang Hua, Du Zhaohui. Numerical Simulation of Condensation in Supercritical CO2 Compressor Based on Equilibrium Condensation Model[J]. Nuclear Power Engineering, 2022, 43(3): 165-172. doi: 10.13832/j.jnpe.2022.03.0165
    [5]Xiong Wei, Zhang Jinsong, Cao Qi, Chen Yunming, Yang Yu, Lu Yunyun, Yang Yang, Tang Jia, Wang Haijun, Liu Chenlong. Study on Adsorption Kinetics of Gaseous Iodine by 8% Silver Loaded Mordenite[J]. Nuclear Power Engineering, 2022, 43(1): 221-225. doi: 10.13832/j.jnpe.2022.01.0221
    [6]Zhang Cheng, Yan Xiao, Peng Shinian, Yuan Dewen, Liu Wenxing. Research on Adsorption and Energy Storage of Refrigerants R1234yf and R32 in MOF-74[J]. Nuclear Power Engineering, 2022, 43(3): 1-6. doi: 10.13832/j.jnpe.2022.03.0001
    [7]Lu Yunyun, Cao Qi, Chen Yunming, Yang Yu, Dai Shuang, Xiong Wei, Wang Zhen. Study on Electrochemical Decontamination of 60Co Contamination on the Stainless Steel Surface[J]. Nuclear Power Engineering, 2021, 42(6): 237-243. doi: 10.13832/j.jnpe.2021.06.0237
    [8]Tang Jia, Huang Yanping, Wang Junfeng, Zang Jinguang, Liu Guangxu, Liu Ruilong. Study on Molecular Dynamics of Singular Nature of Physical Properties near Critical Point in Carbon Dioxide System[J]. Nuclear Power Engineering, 2021, 42(4): 73-79. doi: 10.13832/j.jnpe.2021.04.0073
    [9]Shu Ming, Wang Hao, Wu Songling, Liu Xiao, Wang Li, Kong Fanya, Xu Dianxin. Study on Heat Treatment Process for Improving the Toughness of 1Cr14Co14Mo5 Stainless Steel[J]. Nuclear Power Engineering, 2020, 41(6): 75-79.
    [10]Chen Wu, Zhang Hengquan, Ye Xiaofeng, Zeng Jing, Xiao Hongxing, Zhou Mengbing. First-Principle Study of H Atom Adsorption on Zr(0001) Surface[J]. Nuclear Power Engineering, 2020, 41(2): 22-26.
    [11]Liu Guijun, Chen Deqi, Hu Lian, Wang Junfeng. Numerical Investigation on Flow and Heat Transfer Characteristics of  S-CO2 in Narrow Space Channel of PCHE Based on CFD Simulation[J]. Nuclear Power Engineering, 2019, 40(3): 12-16. doi: 10.13832/j.jnpe.2019.03.0012
    [12]Xiong Wei, Cao Qi, Wang Haijun, Chen Yunming, Wu Wangsuo, Zhang Jinsong. Study on Dynamic Adsorption of Gaseous Iodine by Silver Loaded Mordenite and Alumina[J]. Nuclear Power Engineering, 2019, 40(1): 131-134. doi: 10.13832/j.jnpe.2019.01.0131
    [13]Hu Wenchao, Han Jingru, Li Tieping, Zhao Chuanqi, JinG Jianping, Zhang Chunming. Sensitivity of 58Co and 60Co for Activated Corrosion Products Source Terms in Pressurized Water Reactor[J]. Nuclear Power Engineering, 2017, 38(6): 47-50. doi: 10.13832/j.jnpe.2017.06.0047
    [14]Zhu Bonan, Liu Yu, Wang Yiwei. Design Calculation of Carbon Delay Bed[J]. Nuclear Power Engineering, 2017, 38(4): 79-83. doi: 10.13832/j.jnpe.2017.04.0079
    [15]Liu Guangxu, Huang Yanping, Wang Junfeng, Zan Yuanfeng, Lang Xuemei. Experimental Study on Effect of Buoyancy and Flow Acceleration on Heat Transfer of Supercritical CO2[J]. Nuclear Power Engineering, 2016, 37(2): 48-51. doi: 10.13832/j.jnpe.2016.02.0048
    [16]Yang Bin, Li Bing, Zhang Jingsong. Study on Adsorption Properties on Strontium and Cesium of HAP and HAP-AMP[J]. Nuclear Power Engineering, 2016, 37(S1): 52-55. doi: 10.13832/j.jnpe.2016.S1.0052
    [17]Ji Jinnan. Design of Sample Analysis Device for Iodine Adsorption Efficiency Test in NPPs[J]. Nuclear Power Engineering, 2015, 36(3): 103-105. doi: 10.13832/j.jnpe.2015.03.0103
    [18]Liu Yongfeng, Zhang Huazheng. Comprehensive Control of TOC in Demineralized Water at AP1000 Nuclear Power Plant[J]. Nuclear Power Engineering, 2014, 35(S1): 203-205.
    [19]WANG Meiling, WANG Guanchun, FU Daogui, JIAN Min, LIU Xiaozhen, ZOU Congpei. Adsorption Characteristics of Boron on Boron Selective Resin[J]. Nuclear Power Engineering, 2012, 33(S2): 120-123.
    [20]WANG Zhaoxi, QU Baoping, XUE Fei, YANG Hao, SHI Huiji. Experimental Investigation of Hydrogen Embrittlement of 65Mn Steel with Small Punch Testing Method[J]. Nuclear Power Engineering, 2011, 32(4): 14-18.
  • Cited by

    Periodical cited type(1)

    1. 解鹤,刘烊稳,陈兵兵,李佳利,晁婧,王蓉. 沸石咪唑酯骨架材料(ZIFs)合成及吸附性能研究进展. 当代化工研究. 2024(23): 13-15 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.6 %FULLTEXT: 18.6 %META: 75.1 %META: 75.1 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.5 %其他: 7.5 %其他: 0.7 %其他: 0.7 %[]: 0.2 %[]: 0.2 %上海: 0.2 %上海: 0.2 %东莞: 0.7 %东莞: 0.7 %临汾: 0.2 %临汾: 0.2 %佛山: 0.2 %佛山: 0.2 %保定: 0.5 %保定: 0.5 %六安: 0.2 %六安: 0.2 %兰州: 0.2 %兰州: 0.2 %北京: 3.4 %北京: 3.4 %十堰: 0.2 %十堰: 0.2 %南京: 1.0 %南京: 1.0 %南昌: 0.5 %南昌: 0.5 %台州: 0.2 %台州: 0.2 %合肥: 0.5 %合肥: 0.5 %吉林: 0.2 %吉林: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %大连: 0.2 %大连: 0.2 %天津: 1.0 %天津: 1.0 %太原: 0.5 %太原: 0.5 %安顺: 0.5 %安顺: 0.5 %宝鸡: 0.2 %宝鸡: 0.2 %宣城: 0.5 %宣城: 0.5 %山景城: 0.7 %山景城: 0.7 %常德: 1.0 %常德: 1.0 %广州: 1.5 %广州: 1.5 %弗吉: 0.2 %弗吉: 0.2 %张家口: 6.5 %张家口: 6.5 %德宏: 0.5 %德宏: 0.5 %扬州: 0.5 %扬州: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 0.7 %杭州: 0.7 %桂林: 0.5 %桂林: 0.5 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.5 %沈阳: 0.5 %淄博: 0.5 %淄博: 0.5 %漯河: 1.2 %漯河: 1.2 %潍坊: 0.2 %潍坊: 0.2 %玉林: 0.2 %玉林: 0.2 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.5 %福州: 0.5 %纽约: 0.2 %纽约: 0.2 %芒廷维尤: 40.2 %芒廷维尤: 40.2 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.2 %莫斯科: 0.2 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.2 %襄阳: 0.2 %西宁: 8.2 %西宁: 8.2 %西安: 2.2 %西安: 2.2 %诺沃克: 1.5 %诺沃克: 1.5 %贵阳: 0.5 %贵阳: 0.5 %运城: 2.9 %运城: 2.9 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.2 %郑州: 0.2 %鄂州: 0.2 %鄂州: 0.2 %重庆: 0.2 %重庆: 0.2 %镇江: 0.2 %镇江: 0.2 %长沙: 1.9 %长沙: 1.9 %防城港: 0.2 %防城港: 0.2 %阿什本: 0.2 %阿什本: 0.2 %青岛: 0.2 %青岛: 0.2 %黄冈: 0.7 %黄冈: 0.7 %黄石: 0.2 %黄石: 0.2 %其他其他[]上海东莞临汾佛山保定六安兰州北京十堰南京南昌台州合肥吉林哥伦布嘉兴圣彼得堡大连天津太原安顺宝鸡宣城山景城常德广州弗吉张家口德宏扬州朝阳杭州桂林武汉沈阳淄博漯河潍坊玉林石家庄福州纽约芒廷维尤芝加哥苏州莫斯科衡阳衢州襄阳西宁西安诺沃克贵阳运城邯郸郑州鄂州重庆镇江长沙防城港阿什本青岛黄冈黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (309) PDF downloads(27) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return