Citation: | Qin Shuai, Li Yunzhao, He Qingming, Bai Jiahe, Dong Wenchang, Cao Liangzhi, Wu Hongchun. Assembly-Homogenized Calculation based on NECP-MCX and Its Application in HPR1000[J]. Nuclear Power Engineering, 2023, 44(3): 21-27. doi: 10.13832/j.jnpe.2023.03.0021 |
[1] |
TOHJOH M, WATANABE M, YAMAMOTO A. Application of continuous-energy Monte Carlo code as a cross-section generator of BWR core calculations[J]. Annals of Nuclear Energy, 2005, 32(8): 857-875. doi: 10.1016/j.anucene.2005.01.002
|
[2] |
FRIDMAN E, LEPPÄNEN J. On the use of the Serpent Monte Carlo code for few-group cross section generation[J]. Annals of Nuclear Energy, 2011, 38(6): 1399-1405. doi: 10.1016/j.anucene.2011.01.032
|
[3] |
PARK H J, SHIM H J, JOO H G, et al. Generation of few-group diffusion theory constants by Monte Carlo code McCARD[J]. Nuclear Science and Engineering, 2012, 172(1): 66-77. doi: 10.13182/NSE11-22
|
[4] |
李满仓. 连续能量蒙特卡罗方法组件均匀化研究[D]. 北京: 清华大学, 2012.
|
[5] |
吴高晨. 基于RMC的连续能量蒙特卡罗均匀化与群常数产生研究[D]. 北京: 清华大学, 2018.
|
[6] |
杜夏楠,吴宏春,郑友琦. 蒙特卡罗方法在快堆组件参数计算中的应用[J]. 核动力工程,2014, 35(S2): 67-70.
|
[7] |
KORD S. SMITH Nodal diffusion methods and lattice physics data in LWR analyses: Understanding numerous subtle details[J]. Progress in Nuclear Energy, 2017, 101: 360-369.
|
[8] |
郑琪,沈炜,贺清明,等. 基于NECP-MCX的蒙特卡罗-确定论耦合及权窗网格粗化方法研究[J]. 核动力工程,2021, 42(2): 202-207.
|
[9] |
LIU Z Y, SMITH K, FORGET B, et al. Cumulative migration method for computing rigorous diffusion coefficients and transport cross sections from Monte Carlo[J]. Annals of Nuclear Energy, 2018, 112: 507-516. doi: 10.1016/j.anucene.2017.10.039
|
[10] |
REDMOND E L. Multigroup cross section generation via Monte Carlo methods[D]. Cambridge: Massachusetts Institute of Technology, 1997.
|
[11] |
DAWN W C, ORTENSI J, DEHART M D, et al. Comparison of generation of higher-order neutron scattering cross sections[R]. Idaho Falls: Idaho National Laboratory, 2020.
|
[12] |
LEPPÄNEN J, PUSA M, FRIDMAN E. Overview of methodology for spatial homogenization in the Serpent 2 Monte Carlo code[J]. Annals of Nuclear Energy, 2016, 96: 126-136. doi: 10.1016/j.anucene.2016.06.007
|
[13] |
STAMM’LER R J, ABBATE M J. Methods of steady-state reactor physics in nuclear design[M]. London: Academic Press, 1983: 151-152.
|
[14] |
田超,郑友琦,李云召,等. 压水堆各向异性散射的输运修正方法研究[J]. 原子能科学技术,2017, 51(9): 1599-1605.
|
[15] |
LIN C S, YANG W S. An assessment of the applicability of multigroup cross sections generated with Monte Carlo method for fast reactor analysis[J]. Nuclear Engineering and Technology, 2020, 52(12): 2733-2742. doi: 10.1016/j.net.2020.05.029
|
[16] |
SMITH K S. Assembly homogenization techniques for light water reactor analysis[J]. Progress in Nuclear Energy, 1986, 17(3): 303-335. doi: 10.1016/0149-1970(86)90035-1
|
[17] |
GODFREY A T. VERA core physics benchmark progression problem specifications, revision 4[R]. Oka Ridge: Oka Ridge National Laboratory, 2014.
|
[18] |
万承辉,李云召,郑友琦,等. 压水堆燃料管理软件Bamboo-C研发及工业确认[J]. 核动力工程,2021, 42(5): 15-22.
|