Advance Search
Volume 45 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Fang Zheng, Du Song, Bu Shanshan, Li Zhenzhong, Chen Deqi. Numerical Study on DNB-Type Critical Heat Flux in Circular Tube under Rolling Condition[J]. Nuclear Power Engineering, 2024, 45(4): 24-31. doi: 10.13832/j.jnpe.2024.04.0024
Citation: Fang Zheng, Du Song, Bu Shanshan, Li Zhenzhong, Chen Deqi. Numerical Study on DNB-Type Critical Heat Flux in Circular Tube under Rolling Condition[J]. Nuclear Power Engineering, 2024, 45(4): 24-31. doi: 10.13832/j.jnpe.2024.04.0024

Numerical Study on DNB-Type Critical Heat Flux in Circular Tube under Rolling Condition

doi: 10.13832/j.jnpe.2024.04.0024
  • Received Date: 2023-10-18
  • Rev Recd Date: 2023-11-19
  • Publish Date: 2024-08-12
  • A three-dimensional numerical calculation was carried out on the departure from nucleate boiling (DNB) type critical heat flux (CHF) in a vertical circular tube under different rolling conditions. The Euler two-phase flow model and the non-equilibrium wall boiling model were used. By comparing the simulated CHF values of static tubes with experimental values, a sensitivity analysis of different wall boiling sub-models was completed. The CHF of a vertical tube with sinusoidal simple harmonic rolling motion is predicted for 15 combinations of amplitude and period. The results show that all rolling conditions lead to the early occurrence of DNB. In the most "violent" rolling situation, the value of CHF is the smallest. The temperature and heat transfer coefficient in the tube will change periodically with the rolling motion. Within a period, larger amplitude and smaller period will cause the heating wall to have a smaller heat transfer coefficient at a certain moment, resulting in an increase in the maximum temperature of the wall. This study can provide a reference for the numerical prediction of DNB-type CHF under rolling conditions.

     

  • loading
  • [1]
    庞凤阁,高璞珍,王兆祥,等. 摇摆对常压水临界热流密度(CHF)影响实验研究[J]. 核科学与工程,1997, 17(4): 367-371.
    [2]
    高璞珍,王兆祥,庞凤阁,等. 摇摆情况下水的自然循环临界热流密度实验研究[J]. 哈尔滨工程大学学报,1997, 18(6): 38-42.
    [3]
    HWANG J S, LEE Y G, PARK G C. Characteristics of critical heat flux under rolling condition for flow boiling in vertical tube[J]. Nuclear Engineering and Design, 2012, 252: 153-62. doi: 10.1016/j.nucengdes.2012.06.032
    [4]
    ZHANG R, CONG T L, TIAN W X, et al. Prediction of CHF in vertical heated tubes based on CFD methodology[J]. Progress in Nuclear Energy, 2015, 78: 196-200. doi: 10.1016/j.pnucene.2014.10.001
    [5]
    李权,焦拥军,于俊崇. 竖直加热圆管内过冷沸腾及CHF数值模拟[J]. 核动力工程,2015, 36(1): 168-172.
    [6]
    陈丽娟. 竖直加热管道内干涸型临界沸腾数值分析[D]. 哈尔滨: 哈尔滨工程大学,2018.
    [7]
    PENG J, CHEN D Q, XU J J, et al. CFD simulation focusing on void distribution of subcooled flow boiling in circular tube under rolling condition[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119790. doi: 10.1016/j.ijheatmasstransfer.2020.119790
    [8]
    祁伟,步珊珊,李振中,等. 摇摆条件下竖直圆管内干涸型临界沸腾的数值研究[J]. 核动力工程,2022, 43(5): 63-69.
    [9]
    DEL VALLE V H, KENNING D B R. Subcooled flow boiling at high heat flux[J]. International Journal of Heat and Mass Transfer, 1985, 28(10): 1907-1920. doi: 10.1016/0017-9310(85)90213-3
    [10]
    COLE R. A photographic study of pool boiling in the region of the critical heat flux[J]. AIChE Journal, 1960, 6(4): 533-538. doi: 10.1002/aic.690060405
    [11]
    TOLUBINSKY V I, KOSTANCHUK D M. Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling[C]//International Heat Transfer Conference 4. Danbury, USA: Begell House Inc., 1970: 1-11.
    [12]
    KOCAMUSTAFAOGULLARI G, ISHII M. Interfacial area and nucleation site density in boiling systems[J]. International Journal of Heat and Mass Transfer, 1983, 26(9): 1377-1387. doi: 10.1016/S0017-9310(83)80069-6
    [13]
    ÜNAL H C. Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2[J]. International Journal of Heat and Mass Transfer, 1976, 19(6): 643-649. doi: 10.1016/0017-9310(76)90047-8
    [14]
    LEMMERT M, CHAWLA J M. Influence of flow velocity on surface boiling heat transfer coefficient[M]//HAHNE E, GRIGULL U. Heat Transfer in Boiling. New York: Academic Press and Hemisphere, 1977: 237-247.
    [15]
    KOCAMUSTAFAOGULLARI G, ISHII M. Foundation of the interfacial area transport equation and its closure relations[J]. International Journal of Heat and Mass Transfer, 1995, 38(3): 481-493. doi: 10.1016/0017-9310(94)00183-V
    [16]
    CELATA G P, CUMO M, MARIANI A. Burnout in highly subcooled water flow boiling in small diameter tubes[J]. International Journal of Heat and Mass Transfer, 1993, 36(5): 1269-1285. doi: 10.1016/S0017-9310(05)80096-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (150) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return