Advance Search
Volume 45 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Peng Zhiwen, Chen Xiaoliang, Zhu Jiachen, Wang Feng. Research on Optimization of Core Power Regulation System of Swimming Pool Reactor Based on PSO-BP Neural Network[J]. Nuclear Power Engineering, 2024, 45(4): 173-180. doi: 10.13832/j.jnpe.2024.04.0173
Citation: Peng Zhiwen, Chen Xiaoliang, Zhu Jiachen, Wang Feng. Research on Optimization of Core Power Regulation System of Swimming Pool Reactor Based on PSO-BP Neural Network[J]. Nuclear Power Engineering, 2024, 45(4): 173-180. doi: 10.13832/j.jnpe.2024.04.0173

Research on Optimization of Core Power Regulation System of Swimming Pool Reactor Based on PSO-BP Neural Network

doi: 10.13832/j.jnpe.2024.04.0173
  • Received Date: 2023-08-29
  • Rev Recd Date: 2023-11-21
  • Publish Date: 2024-08-12
  • Based on the MATLAB/Simulink, the simulation model of the power regulation system and the primary heat transfer system of the 49-2 swimming pool reactor was constructed, and the external reactive disturbance simulation test was carried out to verify the accuracy of the model. The proportion integration differentiation (PID) controller combined with particle swarm optimization (PSO) and BP neural network was used as the main controller, and the response of the regulating system under core reactivity and core inlet temperature disturbance was simulated, which was compared with that of the original controller of swimming pool reactor and the traditional BP neural network controller. The results show that the PID controller based on PSO-BP neural network can make the core reach a stable state quickly, with shorter regulating time and smaller overshoot, and has better robustness and stability.

     

  • loading
  • [1]
    张亚东. 49-2游泳池反应堆安全分析报告:ZYY.HSY.DG.224[R]. 北京: 中国原子能科学研究院,2016.
    [2]
    何丽华,于涛,郑平卫. 反应堆功率控制系统PID控制器参数整定及仿真[J]. 核电子学与探测技术,2013, 33(6): 775-777,786. doi: 10.3969/j.issn.0258-0934.2013.06.029
    [3]
    李献,骆志伟,于晋臣. MATLAB/Simulink系统仿真[M]. 北京: 清华大学出版社,2017:396-398.
    [4]
    黄轲,王琳,肖凯,等. 基于粒子群算法的反应堆功率调节系统优化研究[J]. 科技视界,2019(10): 64-66,70.
    [5]
    曾雄飞. 基于粒子群算法优化BP神经网络的PID控制算法[J]. 电子设计工程,2022, 30(11): 69-73,78.
    [6]
    黄忠霖. 控制系统MATLAB计算及仿真[M]. 第二版. 北京: 国防工业出版社,2004:284-285.
    [7]
    LORENZI S, CAMMI A, BORTOT S, et al. Analytical models for a small LFR core dynamics studies[J]. Nuclear Engineering and Design, 2013, 254: 67-88. doi: 10.1016/j.nucengdes.2012.09.001
    [8]
    罗璋琳,段天英. 反应堆控制与仪表[M]. 北京: 中国原子能出版社,1993:311-314.
    [9]
    熊华胜,李铎. 基于Unscented卡尔曼滤波器的反应堆周期计算算法研究[J]. 原子能科学技术,2014, 48(S1): 568-571.
    [10]
    KIM Y B, VISTA IV F P, CHO S B, et al. Digitalization of the Ex-core neutron flux monitoring system for APR1400 nuclear power plant[J]. Applied Sciences, 2020, 10(23): 8331. doi: 10.3390/app10238331
    [11]
    朱珈辰. 49-2游泳池反应堆两套功率调节系统切换仿真分析[J]. 仪器仪表用户,2016, 23(5): 71-73. doi: 10.3969/j.issn.1671-1041.2016.05.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (48) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return