Citation: | Zhou Yuancheng, Li Yunzhao, Wu Hongchun. Research on PWR Core Refueling Optimization Method Based on Bayesian Optimization[J]. Nuclear Power Engineering, 2025, 46(2): 202-208. doi: 10.13832/j.jnpe.2024.09.0003 |
[1] |
LI Z, WANG J C, DING M. A review on optimization methods for nuclear reactor fuel reloading analysis[J]. Nuclear Engineering and Design, 2022, 397: 111950. doi: 10.1016/j.nucengdes.2022.111950
|
[2] |
KIRKPATRICK S, GELATT JR C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680. doi: 10.1126/science.220.4598.671
|
[3] |
HOLLAND J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. Cambridge: MIT Press, 1992.
|
[4] |
KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks. Perth: IEEE, 1995: 1942-1948.
|
[5] |
ERDOĞAN A, GEÇKINLI M. A PWR reload optimisation code (XCore) using artificial neural networks and genetic algorithms[J]. Annals of Nuclear Energy, 2003, 30(1): 35-53. doi: 10.1016/S0306-4549(02)00041-5
|
[6] |
WAN C H, LEI K H, LI Y S. Optimization method of fuel-reloading pattern for PWR based on the improved convolutional neural network and genetic algorithm[J]. Annals of Nuclear Energy, 2022, 171: 109028. doi: 10.1016/j.anucene.2022.109028
|
[7] |
LI Z, WANG J C, HUANG J, et al. Development and research of triangle-filter convolution neural network for fuel reloading optimization of block-type HTGRs[J]. Applied Soft Computing, 2022, 136: 110126.
|
[8] |
JIN Y C. Surrogate-assisted evolutionary computation: recent advances and future challenges[J]. Swarm and Evolutionary Computation, 2011, 1(2): 61-70. doi: 10.1016/j.swevo.2011.05.001
|
[9] |
JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. doi: 10.1023/A:1008306431147
|
[10] |
WANG X L, JIN Y C, SCHMITT S, et al. Recent advances in Bayesian optimization[J]. ACM Computing Surveys, 2023, 55(13s): 287. doi: 10.1145/3582078
|
[11] |
SHAHRIARI B, SWERSKY K, WANG Z Y, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148-175. doi: 10.1109/JPROC.2015.2494218
|
[12] |
SEEGER M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69-106. doi: 10.1142/S0129065704001899
|
[13] |
MOČKUS J. On Bayesian methods for seeking the extremum[C]//Proceedings of the IFIP Technical Conference on Optimization Techniques. Novosibirsk: Springer, 1974: 400-404.
|
[14] |
AUER P. Finite-time Analysis of the Multiarmed Bandit Problem[Z]. Kluwer Academic Publishers, 2002.
|
[15] |
KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. arXiv, 2022. [2024-07-01]. http://arxiv.org/abs/1312.6114.
|
[16] |
KAYA M, BİLGE H Ş. Deep metric learning: a survey[J]. Symmetry, 2019, 11(9): 1066. doi: 10.3390/sym11091066
|
[17] |
ISHFAQ H, HOOGI A, RUBIN D. TVAE: triplet-based variational autoencoder using metric learning[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver: ICLR, 2018.
|
[18] |
KOGE D, ONO N, HUANG M, et al. Embedding of molecular structure using molecular hypergraph variational autoencoder with metric learning[J]. Molecular Informatics, 2021, 40(2): e2000203. doi: 10.1002/minf.202000203
|
[19] |
DAULTON S, ERIKSSON D, BALANDAT M, et al. Multi-objective Bayesian optimization over high-dimensional search spaces[EB/OL]. arXiv, 2022. [2024-04-22]. http://arxiv.org/abs/2109.10964.
|
[20] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017: 6000-6010.
|
[21] |
YU W H, SI C Y, ZHOU P, et al. MetaFormer baselines for vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(2): 896-912. doi: 10.1109/TPAMI.2023.3329173
|
[22] |
GROSNIT A, TUTUNOV R, MARAVAL A M, et al. High-dimensional Bayesian optimisation with variational autoencoders and deep metric learning[EB/OL]. arXiv, 2021. [2024-02-26]. http://arxiv.org/abs/2106.03609.
|
[23] |
MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61. doi: 10.1080/00401706.2000.10485979
|
[24] |
SRINIVAS N, DEB K. Muiltiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248. doi: 10.1162/evco.1994.2.3.221
|
[25] |
TRIPP A, DAXBERGER E, HERNÁNDEZ-LOBATO J M. Sample-efficient optimization in the latent space of deep generative models via weighted retraining[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc. , 2020: 945.
|
[26] |
梁毅琳,李云召,周原成,等.基于核电厂实测数据的NECP-Bamboo软件验证与确认[J].核动力工程, 2024, 45(2):24-34.
梁毅琳, 李云召, 周原成, 等.基于核电厂实测数据的NECP-Bamboo软件验证与确认[J].核动力工程, 2024, 45(2):24-34.
|
[27] |
李倩倩. 基于压水堆换料优化基准问题的随机优化方法的机理及应用研究[D]. 上海: 上海交通大学,2010.
|
[28] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
|
[29] |
BLANK J, DEB K. Pymoo: multi-objective optimization in python[J]. IEEE Access, 2020, 8: 89497-89509. doi: 10.1109/ACCESS.2020.2990567
|
[1] | Qian Hao, Chen Guangliang, Liu Dong, Yu Yang, Jiang Hongwei, Yin Xinli, Yang Yucheng. Deep Learning Solution Technology for Sparse Data of Multi-Channel Flow Field of PWR Rod Bundle[J]. Nuclear Power Engineering, 2025, 46(2): 81-89. doi: 10.13832/j.jnpe.2024.080039 |
[2] | Shao Ruizhi, Cao Liangzhi, Li Yunzhao, Chen Lei. Best Estimate Power Method Based on Vanadium SPND Prompt Response Currents[J]. Nuclear Power Engineering, 2025, 46(1): 41-46. doi: 10.13832/j.jnpe.2025.01.0041 |
[3] | Liu Yongchao, Tan Sichao, Li Tong, Cheng Jiahao, Wang Bo, Gao Puzhen, Tian Ruifeng. Research on Intelligent Control Method of Operating Temperature of Reactor Thermal System Based on Deep Reinforcement Learning[J]. Nuclear Power Engineering, 2024, 45(S2): 197-205. doi: 10.13832/j.jnpe.2024.S2.0197 |
[4] | Tang Songqian, Yu Hong, Lyu Huanwen, Wen Xingjian, Miao Jianxin, Chen Xin. Research on Rapid Calculation and Reconstruction Technology of Radiation Field Based on Bayesian Inference Method[J]. Nuclear Power Engineering, 2024, 45(S2): 110-114. doi: 10.13832/j.jnpe.2024.S2.0110 |
[5] | Yang Jihong, Chen Ling, Wang Xiaolong, Zhang Yongfa, Gao Ming. Research on Historical Anomaly Data Detection Technology for Nuclear Power Plant Based on Deep Auto-Encoder[J]. Nuclear Power Engineering, 2024, 45(2): 207-213. doi: 10.13832/j.jnpe.2024.02.0207 |
[6] | Liang Yilin, Li Yunzhao, Zhou Yuancheng, Li Yisong, Zhang Hengrui, Zhou Shilong, Wang Weiguo, Ou Yuxiang, Wang Songzhe, Qin Junwei, Shao Ruizhi. Verification and Validation of NECP-Bamboo Based on Measurement Data from Nuclear Power Plants[J]. Nuclear Power Engineering, 2024, 45(2): 24-34. doi: 10.13832/j.jnpe.2024.02.0024 |
[7] | Lou Lei, Wang Lianjie, Chen Chang, Zhao Chen, Zhou Bingyan, Yan Mingyu, Ma Dangwei. Conceptual Design Optimization of Uranium-zirconium Alloy Fuel Core for Modular Lead-based Fast Reactor[J]. Nuclear Power Engineering, 2023, 44(6): 1-8. doi: 10.13832/j.jnpe.2023.06.0001 |
[8] | Wei Wentao, Li Meifu, Zhu Dahuan, Zhong Mingjun, Guo Yongjin, Du Zhengyu, Jiang Xiaowei. Research on Reliability Evaluation Method of Nuclear Energy System Based on Dynamic Bayesian Network[J]. Nuclear Power Engineering, 2023, 44(S2): 109-114. doi: 10.13832/j.jnpe.2023.S2.0109 |
[9] | Qin Junwei, Li Yunzhao, Wang Kunpeng, Wu Hongchun, Cao Liangzhi. Three-Dimensional Pin-by-pin Transient Analysis for PWR-Core[J]. Nuclear Power Engineering, 2023, 44(6): 32-38. doi: 10.13832/j.jnpe.2023.06.0032 |
[10] | Ma Zirong, Su Jian, Zhou Sheng. Research of Optimization Technology for Equilibrium Cycle with Gadolinium[J]. Nuclear Power Engineering, 2021, 42(3): 1-5. doi: 10.13832/j.jnpe.2021.03.0001 |
[11] | Huang Yongzhong, Li Yuanming, Li Wenjie, Li Quan, Chai Xiaoming, Zhao Bo, Tang Changbing. Design and Optimization of Typical Cells of Solid Core for Heat Pipe Reactor[J]. Nuclear Power Engineering, 2021, 42(6): 87-92. doi: 10.13832/j.jnpe.2021.06.0087 |
[12] | An Jin, Yan Lin. Application of Bayesian Estimation Method in Parameter Estimation of Alpha Factor Model[J]. Nuclear Power Engineering, 2021, 42(2): 157-160. doi: 10.13832/j.jnpe.2021.02.0157 |
[13] | Liang Boning, Wu Hongchun, Li Yunzhao. Heterogeneous Discontinuity Factors in Heterogeneous Variational Nodal Method to Eliminate Control Rod Cusping Effect[J]. Nuclear Power Engineering, 2020, 41(6): 31-35. |
[14] | Li Songling, Peng Xingjie, Jiang Zhumin, Yu Yingrui, Li Qing. Reactor Core Power Mapping Based on Bayesian Inference[J]. Nuclear Power Engineering, 2019, 40(2): 167-170. doi: 10.13832/j.jnpe.2019.02.0167 |
[15] | Yang Jian, An Jin. Application of Parametric Empirical Bayes Method in Frequency Statistics of Initiating Event[J]. Nuclear Power Engineering, 2018, 39(4): 107-111. doi: 10.13832/j.jnpe.2018.04.0107 |
[16] | Li Yunzhao, Yang Wen, Wang Sicheng, Zhang Bin, Wu Hongchun, Cao Liangzhi. Design and Verification of a PWR-Core Pin-by-Pin Fuel Management Calculation Code[J]. Nuclear Power Engineering, 2018, 39(S2): 29-32. doi: 10.13832/j.jnpe.2018.S2.0029 |
[17] | Wang Lianjie, Lu Di, Chen Bingde, Yao Dong, Zhao Wenbo. Optimization Design for Supercritical Water Reactor CSR1000 Core[J]. Nuclear Power Engineering, 2016, 37(5): 161-166. doi: 10.13832/j.jnpe.2016.05.0161 |
[18] | Shen Zhiyuan, Chen Wei, Yuan Jianxin, Tang Xiuhuan, Yang Jian. Bayesian Method of PSA Generic Data Processing Based on Jeffreys Prior[J]. Nuclear Power Engineering, 2014, 35(6): 84-87. doi: 10.13832/j.jnpe.2014.06.0084 |
[19] | LIU Shi-chang, CAI Jie-jin. Study on Fuel Loading Pattern Optimization for A Pressurized Water Reactor Using Particles Warm Method[J]. Nuclear Power Engineering, 2013, 34(5): 1-5. |
[20] | GONG Zhaohu, YAO Dong, WANG Kan, WANG Mingli. Improvements of Interval Bound Algorithm for Reactor Reloading Pattern Optimization and Their Verifications[J]. Nuclear Power Engineering, 2012, 33(5): 6-11. |