Advance Search
Volume 42 Issue S2
Dec.  2021
Turn off MathJax
Article Contents
Lou Lei, Chai Xiaoming, Yao Dong, Li Mancang, Chen Liang, Liu Xiaoli, Zhang Hongbo, Li Sinan, Tang Xiao, Zhou Nan. Research of Double-Heterogeneity Physical Boundary on Dispersed Particle-type Systems[J]. Nuclear Power Engineering, 2021, 42(S2): 82-88. doi: 10.13832/j.jnpe.2021.S2.0082
Citation: Lou Lei, Chai Xiaoming, Yao Dong, Li Mancang, Chen Liang, Liu Xiaoli, Zhang Hongbo, Li Sinan, Tang Xiao, Zhou Nan. Research of Double-Heterogeneity Physical Boundary on Dispersed Particle-type Systems[J]. Nuclear Power Engineering, 2021, 42(S2): 82-88. doi: 10.13832/j.jnpe.2021.S2.0082

Research of Double-Heterogeneity Physical Boundary on Dispersed Particle-type Systems

doi: 10.13832/j.jnpe.2021.S2.0082
  • Received Date: 2021-07-19
  • Accepted Date: 2021-12-06
  • Rev Recd Date: 2021-11-14
  • Publish Date: 2021-12-29
  • Dispersed particle-type systems cannot be described with traditional neutronics calculation programs because of the double-heterogeneity (DH), and the direct use of Volumetric Homogenization Method (VHM) will bring reactivity calculation deviation. In this paper, by analyzing the calculation deviation of volumetric homogenization reactivity of dispersed particle fuel and different types of dispersed particle burnable poison and its relationship with optical length, it is proposed that the influence factors of calculation deviation shall be integrated into corrected optical length. The physical boundary of double-heterogeneity of dispersed particle-type system is proposed. When the corrected optical length is greater than 10−4, the reactivity calculation deviation of the volumetric homogenization method will be more than 100pcm, so the double-heterogeneity of the dispersed particle-type system needs to be taken into account.

     

  • loading
  • [1]
    DAI X, CAO X R, YU S H, et al. Conceptual core design of an innovative small PWR utilizing fully ceramic microencapsulated fuel[J]. Progress in Nuclear Energy, 2014, 75: 63-71. doi: 10.1016/j.pnucene.2014.04.010
    [2]
    GENTRY C, MALDONADO I, GODFREY A, et al. A neutronic investigation of the use of fully ceramic microencapsulated fuel for Pu/Np burning in PWRs[J]. Nuclear Technology, 2014, 186(1): 60-75. doi: 10.13182/NT13-75
    [3]
    SHE D, GUO J, LIU Z H, et al. PANGU code for pebble-bed HTGR reactor physics and fuel cycle simulations[J]. Annals of Nuclear Energy, 2019, 126: 48-58. doi: 10.1016/j.anucene.2018.11.005
    [4]
    VAN DAM H. Long-term control of excess reactivity by burnable particles[J]. Annals of Nuclear Energy, 2000, 27(8): 733-743. doi: 10.1016/S0306-4549(00)82014-9
    [5]
    VAN DAM H. Long-term control of excess reactivity by burnable poison in reflector regions[J]. Annals of Nuclear Energy, 2000, 27(1): 63-69. doi: 10.1016/S0306-4549(00)82005-8
    [6]
    KLOOSTERMAN J L. Application of boron and gadolinium burnable poison particles in UO2 and PUO2 fuels in HTRs[J]. Annals of Nuclear Energy, 2003, 30(17): 1807-1819. doi: 10.1016/S0306-4549(03)00134-8
    [7]
    TALAMO A. Effects of the burnable poison heterogeneity on the long term control of excess of reactivity[J]. Annals of Nuclear Energy, 2006, 33(9): 794-803. doi: 10.1016/j.anucene.2006.04.009
    [8]
    谢仲生. 压水堆核电厂堆芯燃料管理计算及优化[M]. 北京: 原子能出版社, 2001: 86.
    [9]
    谢仲生, 吴宏春, 张少泓. 核反应堆物理分析[M]. 西安: 西安交通大学出版社, 2004: 139-141.
    [10]
    谢仲生, 邓力. 中子输运理论数值计算方法[M]. 西安: 西北工业大学出版社, 2005: 149-151.
    [11]
    WANG K, LI Z G, SHE D, et al. RMC-A monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (119) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return