Citation: | Zhao Chen, Peng Xingjie, Zhang Bin, Chai Xiaoming, Li Qing. Verification and Validation of the Advanced Neutronics Component Program KYLIN V2.0 Based on B&W Critical Experiment Benchmark Task[J]. Nuclear Power Engineering, 2021, 42(S2): 113-118. doi: 10.13832/j.jnpe.2021.S2.0113 |
[1] |
谢仲生. 核反应堆物理分析[M]. 西安: 西安交通大学出版社, 2004: 139-164.
|
[2] |
谢仲生. 压水堆核电厂堆芯燃料管理计算及优化[M]. 北京: 中国原子能出版社, 2001: 21-47.
|
[3] |
柴晓明,涂晓兰,郭凤晨,等. 先进中子学栅格程序KYLIN-2的开发与初步验证[J]. 强激光与粒子束,2017, 27(1): 016016. doi: 10.11884/HPLPB201729.160306
|
[4] |
WANG D Y, PENG X J, YU Y R, et al. Description and verification of KYLIN-V2.0 lattice physics code[J]. Nuclear Engineering and Design, 2021, 379: 111132.
|
[5] |
WEMPLE C A, GHEORGHIU H N M, STAMM’LER R J J, et al. Recent advances in the HELIOS-2 lattice physics code[C]//International Conference on the Physics of Reactors. Interlaken, Switzerland: Casino-Kursaal Conference Center, 2008.
|
[6] |
CHOI S, KHASSENOV A, LEE D. Resonance self-shielding method using resonance interference factor library for practical lattice physics computations of LWRs[J]. Journal of Nuclear Science and Technology, 2015, 53(8): 1142-1154.
|
[7] |
PENG S T, JIANG X F, ZHANG S H, et al. Subgroup method with resonance interference factor table[J]. Annals of Nuclear Energy, 2013, 59: 176-187. doi: 10.1016/j.anucene.2013.04.005
|
[8] |
GAO Z J, XU Y L, DOWNAR T J. The treatment of resonance interference effects in the subgroup method[J]. Annals of Nuclear Energy, 2011, 38(5): 995-1003. doi: 10.1016/j.anucene.2011.01.019
|
[9] |
ASKEW J. A characteristics formulation of the neutron transport equation in complicated geometries: AEEW-M 1108[R]. Winfrith: United Kingdom Atomic Energy Establishment, 1972.
|
[10] |
LIANG L, WU H C, CAO L Z, et al. Development of a two-dimensional modularity characteristics code for neutron transport calculation[C]//2013 21st International Conference on Nuclear Engineering. Chengdu, China: ASME, 2013.
|
[11] |
ZHAO C, LIU Z Y, LIANG L, et al. Improved leakage splitting method for the 2D/1D transport calculation[J]. Progress in Nuclear Energy, 2018, 105: 202-210. doi: 10.1016/j.pnucene.2018.01.007
|
[12] |
WANG D A, XIAO S C. A linear prolongation approach to stabilizing CMFD[J]. Nuclear Science and Engineering, 2018, 190: 45-55. doi: 10.1080/00295639.2017.1417347
|
[13] |
RAHNEMA F, NICHITA E M. Leakage corrected spatial (assembly) homogenization technique[J]. Annals of Nuclear Energy, 1997, 24(6): 477-488. doi: 10.1016/S0306-4549(96)00084-9
|
[14] |
PETROVIC I, BENOIST P, MARLEAU G. A quasi-isotropic reflecting boundary condition for the TIBERE heterogeneous leakage model[J]. Nuclear Science and Engineering, 1996, 122(2): 151-166. doi: 10.13182/NSE96-A24152
|
[15] |
PUSA M, LEPPÄNEN J. Computing the matrix exponential in burnup calculations[J]. Nuclear Science and Engineering, 2010, 164(2): 140-150. doi: 10.13182/NSE09-14
|
[16] |
NEWMAN L W. “Urania-Gadolinia”: Nuclear model development and critical experiment benchmark: DOE/ET/34212-41[R]. Lynchburg, VA, USA: Babcock & Wilcox, 1984.
|
[17] |
BALDWIN M N, HOOVLER G S. Critical experiments supporting close proximity water storage of power reactor fuel: BAW-1484-6[R]. Lynchburg, USA: Babcock & Wilcox Company, 1979.
|