Advance Search
Volume 42 Issue S2
Dec.  2021
Turn off MathJax
Article Contents
Zhao Chen, Peng Xingjie, Zhang Bin, Chai Xiaoming, Li Qing. Verification and Validation of the Advanced Neutronics Component Program KYLIN V2.0 Based on B&W Critical Experiment Benchmark Task[J]. Nuclear Power Engineering, 2021, 42(S2): 113-118. doi: 10.13832/j.jnpe.2021.S2.0113
Citation: Zhao Chen, Peng Xingjie, Zhang Bin, Chai Xiaoming, Li Qing. Verification and Validation of the Advanced Neutronics Component Program KYLIN V2.0 Based on B&W Critical Experiment Benchmark Task[J]. Nuclear Power Engineering, 2021, 42(S2): 113-118. doi: 10.13832/j.jnpe.2021.S2.0113

Verification and Validation of the Advanced Neutronics Component Program KYLIN V2.0 Based on B&W Critical Experiment Benchmark Task

doi: 10.13832/j.jnpe.2021.S2.0113
  • Received Date: 2021-07-19
  • Accepted Date: 2021-12-07
  • Rev Recd Date: 2021-09-12
  • Publish Date: 2021-12-29
  • KYLIN V2.0 is an advanced neutronics component program independently developed by the Nuclear Power Institute of China. The program uses subgroup resonance method, characteristic line method and Chebyshev rational approximation method to calculate resonance, transport and burnup, so as to provide multi-group cross-section library. This paper uses B&W critical experiment benchmark task to verify and validate the KYLIN V2.0 program, including 21 examples of B&W1484 critical benchmark task and 23 examples of B&W1810 critical benchmark task. The calculation results show that the calculation results of KYLIN V2.0 program are in good agreement with the measured data, which verifies that KYLIN V2.0 program has good calculation accuracy and non-uniform calculation ability.

     

  • loading
  • [1]
    谢仲生. 核反应堆物理分析[M]. 西安: 西安交通大学出版社, 2004: 139-164.
    [2]
    谢仲生. 压水堆核电厂堆芯燃料管理计算及优化[M]. 北京: 中国原子能出版社, 2001: 21-47.
    [3]
    柴晓明,涂晓兰,郭凤晨,等. 先进中子学栅格程序KYLIN-2的开发与初步验证[J]. 强激光与粒子束,2017, 27(1): 016016. doi: 10.11884/HPLPB201729.160306
    [4]
    WANG D Y, PENG X J, YU Y R, et al. Description and verification of KYLIN-V2.0 lattice physics code[J]. Nuclear Engineering and Design, 2021, 379: 111132.
    [5]
    WEMPLE C A, GHEORGHIU H N M, STAMM’LER R J J, et al. Recent advances in the HELIOS-2 lattice physics code[C]//International Conference on the Physics of Reactors. Interlaken, Switzerland: Casino-Kursaal Conference Center, 2008.
    [6]
    CHOI S, KHASSENOV A, LEE D. Resonance self-shielding method using resonance interference factor library for practical lattice physics computations of LWRs[J]. Journal of Nuclear Science and Technology, 2015, 53(8): 1142-1154.
    [7]
    PENG S T, JIANG X F, ZHANG S H, et al. Subgroup method with resonance interference factor table[J]. Annals of Nuclear Energy, 2013, 59: 176-187. doi: 10.1016/j.anucene.2013.04.005
    [8]
    GAO Z J, XU Y L, DOWNAR T J. The treatment of resonance interference effects in the subgroup method[J]. Annals of Nuclear Energy, 2011, 38(5): 995-1003. doi: 10.1016/j.anucene.2011.01.019
    [9]
    ASKEW J. A characteristics formulation of the neutron transport equation in complicated geometries: AEEW-M 1108[R]. Winfrith: United Kingdom Atomic Energy Establishment, 1972.
    [10]
    LIANG L, WU H C, CAO L Z, et al. Development of a two-dimensional modularity characteristics code for neutron transport calculation[C]//2013 21st International Conference on Nuclear Engineering. Chengdu, China: ASME, 2013.
    [11]
    ZHAO C, LIU Z Y, LIANG L, et al. Improved leakage splitting method for the 2D/1D transport calculation[J]. Progress in Nuclear Energy, 2018, 105: 202-210. doi: 10.1016/j.pnucene.2018.01.007
    [12]
    WANG D A, XIAO S C. A linear prolongation approach to stabilizing CMFD[J]. Nuclear Science and Engineering, 2018, 190: 45-55. doi: 10.1080/00295639.2017.1417347
    [13]
    RAHNEMA F, NICHITA E M. Leakage corrected spatial (assembly) homogenization technique[J]. Annals of Nuclear Energy, 1997, 24(6): 477-488. doi: 10.1016/S0306-4549(96)00084-9
    [14]
    PETROVIC I, BENOIST P, MARLEAU G. A quasi-isotropic reflecting boundary condition for the TIBERE heterogeneous leakage model[J]. Nuclear Science and Engineering, 1996, 122(2): 151-166. doi: 10.13182/NSE96-A24152
    [15]
    PUSA M, LEPPÄNEN J. Computing the matrix exponential in burnup calculations[J]. Nuclear Science and Engineering, 2010, 164(2): 140-150. doi: 10.13182/NSE09-14
    [16]
    NEWMAN L W. “Urania-Gadolinia”: Nuclear model development and critical experiment benchmark: DOE/ET/34212-41[R]. Lynchburg, VA, USA: Babcock & Wilcox, 1984.
    [17]
    BALDWIN M N, HOOVLER G S. Critical experiments supporting close proximity water storage of power reactor fuel: BAW-1484-6[R]. Lynchburg, USA: Babcock & Wilcox Company, 1979.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (288) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return