Citation: | Fei Junjie, Liu Minyun, Xi Dapeng, Tang Jia, Liu Ruilong, Zan Yuanfeng, Huang Yanping. Numerical Investigation of the Influence of Microchannel Diffusion Welded Heat Exchanger Head Structure on Flow Characteristics[J]. Nuclear Power Engineering, 2023, 44(S2): 176-183. doi: 10.13832/j.jnpe.2023.S2.0176 |
[1] |
KRUIZENGA A M. Heat transfer and pressure drop measurements in prototypic heat exchanges for the supercritical carbon dioxide Brayton power cycles[D]. Madison: The University of Wisconsin, 2010.
|
[2] |
BESARATI S M, GOSWAMI D Y, STEFANAKOS E K. Development of a solar receiver based on compact heat exchanger technology for supercritical carbon dioxide power cycles[J]. Journal of Solar Energy Engineering, 2015, 137(3): 031018. doi: 10.1115/1.4029861
|
[3] |
HAN Z, GUO J, HUAI X. Theoretical analysis of a novel PCHE with enhanced rib structures for high-power supercritical CO2 Brayton cycle system based on solar energy[J]. Energy, 2023, 270: 126928.
|
[4] |
KATO Y. Advanced high temperature gas-cooled reactor systems[J]. Journal of Engineering for Gas Turbines and Power, 2008, 132(1): 012902.
|
[5] |
FERNÁNDEZ I, SEDANO L. Design analysis of a lead-lithium/supercritical CO2 Printed Circuit Heat Exchanger for primary power recovery[J]. Fusion Engineering and Design, 2013, 88(9-10): 2427-2430. doi: 10.1016/j.fusengdes.2013.05.058
|
[6] |
SHIRVAN K. The design of a compact integral medium size PWR: the CIRIS[D]. Cambridge: Massachusetts Institute of Technology, 2010.
|
[7] |
RICKARD C L, FISCHER P U. High temperature gas-cooled reactor systems[C]//Proceedings of the 2nd International Fair and Technical Meetings for Nuclear Industries. Basel, Switzerland, 1969.
|
[8] |
SERRANO I P, CANTIZANO A, LINARES J I, et al. Numerical modeling and design of supercritical CO2 pre-cooler for fusion nuclear reactors[J]. Fusion Engineering and Design, 2012, 87(7-8): 1329-1332. doi: 10.1016/j.fusengdes.2012.03.011
|
[9] |
YOON H J, AHN Y, LEE J I, et al. Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor[J]. Nuclear Engineering and Design, 2012, 245: 223-232. doi: 10.1016/j.nucengdes.2012.01.014
|
[10] |
JEONG W S, LEE J I, JEONG Y H. Potential improvements of supercritical recompression CO2 Brayton cycle by mixing other gases for power conversion system of a SFR[J]. Nuclear Engineering and Design, 2011, 241(6): 2128-2137. doi: 10.1016/j.nucengdes.2011.03.043
|
[11] |
BAE S J, LEE J, AHN Y, et al. Preliminary studies of compact Brayton cycle performance for small modular high temperature gas-cooled reactor system[J]. Annals of Nuclear Energy, 2015, 75: 11-19. doi: 10.1016/j.anucene.2014.07.041
|
[12] |
ROWINSKI M K, WHITE T J, ZHAO J Y. Small and Medium sized Reactors (SMR): a review of technology[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 643-656. doi: 10.1016/j.rser.2015.01.006
|
[13] |
LEE Y, LEE J I. Structural assessment of intermediate printed circuit heat exchanger for sodium-cooled fast reactor with supercritical CO2 cycle[J]. Annals of Nuclear Energy, 2014, 73: 84-95. doi: 10.1016/j.anucene.2014.06.022
|
[14] |
YANG Y, BAI W G, WANG Y M, et al. Coupled simulation of the combustion and fluid heating of a 300 MW supercritical CO2 boiler[J]. Applied Thermal Engineering, 2017, 113: 259-267. doi: 10.1016/j.applthermaleng.2016.11.043
|
[15] |
杨光, 邵卫卫. 印刷电路板换热器结构及传热关联式研究进展[J]. 化工进展, 2021, 40(z1): 13-26.
杨光, 邵卫卫. 印刷电路板换热器结构及传热关联式研究进展[J]. 化工进展, 2021, 40(z1): 13-26.
|
[16] |
BAE S J, AHN Y, LEE J, et al. Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application[J]. Journal of Power Sources, 2014, 270: 608-618. doi: 10.1016/j.jpowsour.2014.07.121
|
[17] |
CHU W X, BENNETT K, CHENG J, et al. Numerical study on a novel hyperbolic inlet header in straight-channel printed circuit heat exchanger[J]. Applied Thermal Engineering, 2019, 146: 805-814. doi: 10.1016/j.applthermaleng.2018.10.027
|