2023, 44(S2): 211-215.
doi: 10.13832/j.jnpe.2023.S2.0211
Abstract:
In order to accurately determine trace arsenic, plumbum, stannum and stibium in the nickel-based alloy (NBS), inductively coupled plasma mass spectrometry (ICP-MS) was used. The HNO3-HCl system was used for airtight digestion of NBS, and the isotope mass numbers were selected as 75, 208, 120, and 121 respectively. The kinetic energy discrimination (KED) mode was used to overcome the mass spectral interference, and the internal standard element 89Y was used to monitor the stability of the instrument and the matrix effect online. A method for the determination of arsenic, plumbum, stannum and stibium in nickel-based alloy was established. Under the optimized conditions, the signal intensities of each element had a good linear relationship with the corresponding mass concentrations, and the linear correlation coefficient was greater than 0.9999. When the sample weight was 0.1 g, the detection range of of the four elements was 10.0-200.0 μg/g. The detection limit of each element was better than 0.15 ng/mL, and the recovery rate of standard addition was between 85%-120%. The relative standard deviation (n=6) of the spiked sample was 2.8%-5.6%. This method has good sensitity, precision and accuracy, and can be used for the determination of arsenic, plumbum, stannum and stibium in NBS.