Citation: | Liu Li, Zhu Longxiang, Zhang Luteng, Ma Zaiyong, Sun Wan, Pan Liangming, Deng Jian. Study on Uncertainty of Two-Phase Flow Parameter Detection Based on Monte Carlo Method[J]. Nuclear Power Engineering, 2024, 45(4): 38-44. doi: 10.13832/j.jnpe.2024.04.0038 |
[1] |
KATAOKA I, ISHII M, SERIZAWA A. Local formulation and measurements of interfacial area concentration in two-phase flow[J]. International Journal of Multiphase Flow, 1986, 12(4): 505-529. doi: 10.1016/0301-9322(86)90057-1
|
[2] |
REVANKAR S T, ISHII M. Local interfacial area measurement in bubbly flow[J]. International Journal of Heat and Mass Transfer, 1992, 35(4): 913-925. doi: 10.1016/0017-9310(92)90257-S
|
[3] |
LEUNG W H, REVANKAR S T, ISHII Y, et al. Axial development of interfacial area and void concentration profiles measured by double-sensor probe method[J]. International Journal of Heat and Mass Transfer, 1995, 38(3): 445-453. doi: 10.1016/0017-9310(94)00181-T
|
[4] |
SHEN X Z, NAKAMURA H. Local interfacial velocity measurement method using a four-sensor probe[J]. International Journal of Heat and Mass Transfer, 2013, 67: 843-852. doi: 10.1016/j.ijheatmasstransfer.2013.08.064
|
[5] |
KIM S, FU X Y, WANG X, et al. Development of the miniaturized four-sensor conductivity probe and the signal processing scheme[J]. International Journal of Heat and Mass Transfer, 2000, 43(22): 4101-4118. doi: 10.1016/S0017-9310(00)00046-6
|
[6] |
HIBIKI T, HOGSETT S, ISHII M. Local measurement of interfacial area, interfacial velocity and liquid turbulence in two-phase flow[J]. Nuclear Engineering and Design, 1998, 184(2-3): 287-304. doi: 10.1016/S0029-5493(98)00203-9
|
[7] |
REVANKAR S T, ISHII M. Theory and measurement of local interfacial area using a four sensor probe in two-phase flow[J]. International Journal of Heat and Mass Transfer, 1993, 36(12): 2997-3007. doi: 10.1016/0017-9310(93)90029-6
|
[8] |
KATAOKA I, ISHII M, SERIZAWA A. Sensitivity analysis of bubble size and probe geometry on the measurements of interfacial area concentration in gas-liquid two-phase flow[J]. Nuclear Engineering and Design, 1994, 146(1-3): 53-70. doi: 10.1016/0029-5493(94)90320-4
|
[9] |
SHEN X Z, SAITO Y, MISHIMA K, et al. Methodological improvement of an intrusive four-sensor probe for the multi-dimensional two-phase flow measurement[J]. International Journal of Multiphase Flow, 2005, 31(5): 593-617. doi: 10.1016/j.ijmultiphaseflow.2005.02.003
|
[10] |
SHEN X Z, MISHIMA K, NAKAMURA H. Error reduction, evaluation and correction for the intrusive optical four-sensor probe measurement in multi-dimensional two-phase flow[J]. International Journal of Heat and Mass Transfer, 2008, 51(3-4): 882-895. doi: 10.1016/j.ijheatmasstransfer.2006.01.054
|
[11] |
WU Q, ISHII M. Sensitivity study on double-sensor conductivity probe for the measurement of interfacial area concentration in bubbly flow[J]. International Journal of Multiphase Flow, 1999, 25(1): 155-173. doi: 10.1016/S0301-9322(98)00037-8
|
[12] |
WU Q, WELTER K, MCCREARY D, et al. Theoretical studies on the design criteria of double-sensor probe for the measurement of bubble velocity[J]. Flow Measurement and Instrumentation, 2001, 12(1): 43-51. doi: 10.1016/S0955-5986(00)00041-8
|
[13] |
WANG D W, FU Y C, LIU Y, et al. A comprehensive uncertainty evaluation of double-sensor conductivity probe[J]. Progress in Nuclear Energy, 2021, 136: 103741. doi: 10.1016/j.pnucene.2021.103741
|
[14] |
WANG D, LIU Y, TALLEY J D. Numerical evaluation of the uncertainty of double-sensor conductivity probe for bubbly flow measurement[J]. International Journal of Multiphase Flow, 2018, 107: 51-66. doi: 10.1016/j.ijmultiphaseflow.2018.05.019
|
[15] |
LE CORRE J M, ISHII M. Numerical evaluation and correction method for multi-sensor probe measurement techniques in two-phase bubbly flow[J]. Nuclear Engineering and Design, 2002, 216(1-3): 221-238. doi: 10.1016/S0029-5493(02)00130-9
|
[1] | Li Li, Zhang Yingxun, Yang Junping, Cui Ying, Chen Xiang, Wang Xinyu, Zhao Kai. Using Convolutional Neural Networks to Distinguish Nucleon Effective Mass Splitting[J]. Nuclear Power Engineering, 2025, 46(2): 68-75. doi: 10.13832/j.jnpe.2024.09.0028 |
[2] | Liu Dong, Tang Lei, An Ping, Zhang Bin, Jiang Yong. The Deep Learning Method to Search Effective Multiplication Factor of Nuclear Reactor Directly[J]. Nuclear Power Engineering, 2023, 44(5): 6-14. doi: 10.13832/j.jnpe.2023.05.0006 |
[3] | Zhu Wei, Hou Qinmai, Cai Ning, Xu Sai, Zhu Jie, Li Qiuqi. Analysis on Validity of Test Data of Primary Circuit Pressure Boundary Leakage Rate[J]. Nuclear Power Engineering, 2022, 43(6): 174-179. doi: 10.13832/j.jnpe.2022.06.0174 |
[4] | Hu Ningning, Dang Zhuoran, Zhang Muhao, Tang Ke, Mamoru Ishii. Measurements of Large Bubble Volume Based on 2-D Images Processing Applying Convolutional Neural Network[J]. Nuclear Power Engineering, 2021, 42(6): 38-43. doi: 10.13832/j.jnpe.2021.06.0038 |
[5] | Cheng Xi, Zhou Guozheng, Tang Ximing, Liang Jun, Zhao Bowen. Effectiveness Assessment and Statistics of Eddy Current Signal in Measuring Oxide Layer of Fuel Rods[J]. Nuclear Power Engineering, 2020, 41(1): 49-53. doi: 10.13832/j.jnpe.2020.01.0049 |
[6] | Shen Dongming, Cai Jiantao, He Rui, Huang Xiaoming. Data Reliability Analysis during Containment Leakage Test Based on Statistical Software R[J]. Nuclear Power Engineering, 2020, 41(5): 99-103. |
[7] | Zhang Qi, Cao Guanghui, Geng Yan, Kong Jing, Liu Peng, Chen Zixi. Analysis of Effectiveness of Medium Voltage Mobile Power Supplies in M310 and Modified Nuclear Power Plants[J]. Nuclear Power Engineering, 2019, 40(4): 81-84. |
[8] | Wei Linfang, Wu Hongchun, Zheng Youqi, Du Xianan, Yuan Xianbao. Computational Method Study for Effective Self-Shielding Cross-Section of URR in Fast Reactor Code SARAX[J]. Nuclear Power Engineering, 2018, 39(S2): 38-42. doi: 10.13832/j.jnpe.2018.S2.0038 |
[9] | Hu Tianliang, CAO Liangzhi, Wu Hongchun, ZHuang Kun. Calculation and Analysis of Effective Delayed Neutron Fraction βeff in MSR[J]. Nuclear Power Engineering, 2017, 38(S1): 37-40. doi: 10.13832/j.jnpe.2017.S1.0037 |
[10] | Jiang Xialan, Liu Taili, Liu Yi, Zhang Xuan. Effectiveness Analysis for Core Coolant Monitoring System during Medium Loss of Coolant Accident[J]. Nuclear Power Engineering, 2017, 38(3): 115-118. doi: 10.13832/j.jnpe.2017.03.0115 |
[11] | Zeng Jianbang, Li Longjian, Ma Jian, Huang Yanping, Wu Nengyou. Simulation of Bubble Growth Process in Boiling Flow Using Lattice Boltzmann Method[J]. Nuclear Power Engineering, 2016, 37(6): 37-40. doi: 10.13832/j.jnpe.2016.06.0037 |
[12] | Chen Sixu, Li Longjian, Hu Anjie, Huang Yanping. Simulation of Bubble Movement with Lattice Boltzmann Method[J]. Nuclear Power Engineering, 2016, 37(4): 148-153. doi: 10.13832/j.jnpe.2016.04.0148 |
[13] | Wen Jing, Tan Sichao, Fu Xuekuan, Meng tao, Song Yulin. Experimental Study on Bubble Velocity Characteristics in Water under Sway Motion[J]. Nuclear Power Engineering, 2016, 37(1): 117-122. doi: 10.13832/j.jnpe.2016.01.0117 |
[14] | GUAN Zhonghua, XIANG Qingan, CHEN Bin, YU Hongxing. Probability Analysis for Effectiveness of IVR Strategy during Severe Accidents for ACP1000 through ROAAM[J]. Nuclear Power Engineering, 2015, 36(6): 56-60. doi: 10.13832/j.jnpe.2015.06.0056 |
[15] | Shi Shaobo, Shen Ping, Tian Xianglu, Gao Luyang. Validity Analysis of Rolled Plugs of Steam Generators Tube[J]. Nuclear Power Engineering, 2015, 36(5): 72-74. doi: 10.13832/j.jnpe.2015.05.0072 |
[16] | Jin Yue, Bao Han, Liu Xiaojing, Cheng Xu. Assessment of In-Vessel Retention for Advanced Large Size PWRs[J]. Nuclear Power Engineering, 2015, 36(3): 135-141. doi: 10.13832/j.jnpe.2015.03.0135 |
[17] | Yin Qiang, Chai Xiaoming, Tu Xiaolan, Pan Junjie. Research of Simulation Program FRET for Fuel Rod Resonance Effective Temperature Mechanism[J]. Nuclear Power Engineering, 2014, 35(S2): 194-196. doi: 10.13832/j.jnpe.2014.S2.0194 |
[18] | CAO Ke-mei, XU Yi-quan, SHI Guo-bao, CAI Jian-ping. ERVC Effectiveness Analysis for Three-Layer Configuration Molten Pool[J]. Nuclear Power Engineering, 2013, 34(4): 20-22,94. |
[19] | CHEN Ronghua, TIAN Wenxi, ZUO Juanli, SU Guanghui, QIU Suizheng, XU Jianhui. Numerical Analysis of Bubble Rising Behavior in a Liquid Metal Using MPS[J]. Nuclear Power Engineering, 2011, 32(5): 96-99. |
[20] | CHEN Xing, ZHANG Shishun, LIN Jiming. Assessment of In-Vessel Corium Retention in CPR1000[J]. Nuclear Power Engineering, 2011, 32(3): 6-9,24. |