Advance Search
Volume 45 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Xu Rongshuan, Xia Hang, Xu Caihong, He Dongyu, Wang Ting, Li Jinggang. Verification and Uncertainty Evaluation of LOCUST Reflood Model[J]. Nuclear Power Engineering, 2024, 45(4): 111-117. doi: 10.13832/j.jnpe.2024.04.0111
Citation: Xu Rongshuan, Xia Hang, Xu Caihong, He Dongyu, Wang Ting, Li Jinggang. Verification and Uncertainty Evaluation of LOCUST Reflood Model[J]. Nuclear Power Engineering, 2024, 45(4): 111-117. doi: 10.13832/j.jnpe.2024.04.0111

Verification and Uncertainty Evaluation of LOCUST Reflood Model

doi: 10.13832/j.jnpe.2024.04.0111
  • Received Date: 2023-08-28
  • Rev Recd Date: 2023-10-10
  • Publish Date: 2024-08-12
  • The reflood stage is an important stage after a large break loss of coolant accident (LBLOCA) in pressurized water reactor. In order to evaluate the simulation ability of the system code LOCUST, the verification and uncertainty research of LOCUST reflood model are carried out. Based on the experimental results of RBHT test bench, the LOCUST reflood model is verified. At the same time, the uncertainty of the reflood model is analyzed by response surface method, and the response function of the maximum temperature of the heating rod surface at three heights of RBHT test section is obtained by response surface method with the wall-liquid film boiling heat transfer coefficient, wall-vapor film boiling heat transfer coefficient and interface friction coefficient as input parameters. The calculated results are in good agreement with the experimental results, and the maximum temperature deviation is within 40 K. Based on the calculation results of response surface method, the maximum deviation of the maximum temperature of the heating rod surface at three heights is about 20 K with 95% probability and 95% confidence. Meanwhile, the highest temperature values calculated for the three heights are basically consistent with the experimental values when the dimensionless factors of the three input parameters are 1.951, 1.233, and 0.1, respectively.

     

  • loading
  • [1]
    李冬,刘晓晶,杨燕华. RELAP5程序再淹没现象物理模型的敏感性分析[J]. 核动力工程,2014, 35(S1): 166-169.
    [2]
    阮神辉,杨继涛,文青龙,等. 基于RBHT再淹没传热试验的RELAP5/MOD4再淹没计算模型验证研究[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 惠州: 2019: 119-129.
    [3]
    李雪琳,张昊,杨燕华. COSINE程序再淹没模型验证及参数敏感性分析[J]. 核动力工程,2022, 43(6): 73-78.
    [4]
    吕莉. 基于RELAP5程序的再淹没膜态沸腾传热模型研究[D]. 衡阳: 南华大学,2015.
    [5]
    SKOREK T, DE CRÉCY A, KOVTONYUK A, et al. Quantification of the uncertainty of the physical models in the system thermal-hydraulic codes – PREMIUM benchmark[J]. Nuclear Engineering and Design, 2019, 354: 110199. doi: 10.1016/j.nucengdes.2019.110199
    [6]
    XIONG Q W, DU P, DENG J, et al. Uncertainty evaluation of the ARSAC reflood model with Bayesian calibration[J]. Progress in Nuclear Energy, 2022, 143: 104055. doi: 10.1016/j.pnucene.2021.104055
    [7]
    徐财红. 两相流热工水力系统分析软件LOCUST-1.2开发概述[C]//中国核学会核反应堆热工流体力学分会第一届学术年会暨中核核反应堆热工水力技术重点实验室2021年学术年会暨国家能源压水反应堆技术研发(实验)中心学术交流会. 重庆: 中国核学会核反应堆热工流体力学分会,中核核反应堆热工水力技术重点实验室与国家能源压水反应堆技术研发(实验)中心,2021.
    [8]
    HOCHREITER L E, CHEUNG F B, LIN T F, et al. Rod bundle heat transfer test facility test plan and design: NUREG/CR-6975[R]. Washington: U. S. Nuclear Regulatory Commission, 2010.
    [9]
    ROSAL E R, LIN T F, MCCLELLAN I S, et al. Rod bundle heat transfer test facility description: NUREG/CR-6976[R]. Washington: U. S. Nuclear Regulatory Commission, 2010.
    [10]
    HOCHREITER L E, CHEUNG F B, LIN T F, et al. RBHT reflood heat transfer experiments data and analysis: NUREG/CR-6980[R]. Washington: U. S. Nuclear Regulatory Commission, 2012.
    [11]
    WANG M J, QIU S Z, SU G H, et al. Preliminary study of parameter uncertainty influence on Pressurized Water Reactor core design[J]. Progress in Nuclear Energy, 2013, 68: 200-209. doi: 10.1016/j.pnucene.2013.07.002
    [12]
    WILKS S S. Determination of sample sizes for setting tolerance limits[J]. The Annals of Mathematical Statistics, 1941, 12(1): 91-96. doi: 10.1214/aoms/1177731788
    [13]
    HASSAN Y A, FU C. RELAP5/MOD3.2 analysis of a VVER-1000 reactor with UO2 fuel and mixed-oxide fuel[J]. Nuclear Technology, 2004, 148(3): 325-334. doi: 10.13182/NT04-A3570
    [14]
    REVENTÓS F, DE ALFONSO E, SANZ R M, et al. PREMIUM: a benchmark on the quantification of the uncertainty of the physical models in system thermal-hydraulic codes: methodologies and data review: NEA/CSNI/R(2016)9[R]. OECD/NEA, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (591) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return