Citation: | Gong Helin, Chen Zhang, Li Qing, Cheng Sibo. Study on a Data-Enabled Physics-Informed Reactor Physics Operational Digital Twin[J]. Nuclear Power Engineering, 2021, 42(S2): 48-53. doi: 10.13832/j.jnpe.2021.S2.0048 |
[1] |
陶飞,刘蔚然,刘检华,等. 数字孪生及其应用探索[J]. 计算机集成制造系统,2018, 24(1): 1-18.
|
[2] |
通用电气(GE)公司. Predix–工业互联网平台[EB/OL]. (2021-11-12)[2021-11-12]. https://www.ge.com/cn/b2b/digital/predix.
|
[3] |
MORILHAT P. Digitalization of Nuclear Power Plants at EDF[Z]. EDF, 2018.
|
[4] |
FRANCESCHINI F, GODFREY A, KULESZA J, et al. Westinghouse VERA test stand-zero power physics test simulations for the AP1000 PWR: CASL Technical Report: CASL-U-2014-0012-001[R]. Consortium for Advanced Simulation of LWRs, 2014
|
[5] |
BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25: 539-575. doi: 10.1146/annurev.fl.25.010193.002543
|
[6] |
BALACHANDAR S. Turbulence, coherent structures, dynamical systems and symmetry[J]. AIAA Journal, 1998, 36(3): 496. doi: 10.2514/2.399
|
[7] |
CHINESTA F, AMMAR A, CUETO E. Proper generalized decomposition of multiscale models[J]. International Journal for Numerical Methods in Engineering, 2010, 83(8-9): 1114-1132. doi: 10.1002/nme.2794
|
[8] |
HESTHAVEN J S, ROZZA G, STAMM B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations[M]. Cham: Springer, 2016: 590.
|
[9] |
GREPL M A, MADAY Y, NGUYEN N C, et al. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[J]. ESAIM:Mathematical Modelling and Numerical Analysis, 2007, 41(3): 575-605. doi: 10.1051/m2an:2007031
|
[10] |
HOLIDAY A, KOOSHKBAGHI M, BELLO-RIVAS J M, et al. Manifold learning for parameter reduction[J]. Journal of Computational Physics, 2019, 392: 419-431. doi: 10.1016/j.jcp.2019.04.015
|
[11] |
COHEN A, DEVORE R. Kolmogorov widths under holomorphic mappings[J]. IMA Journal of Numerical Analysis, 2016, 36(1): 1-12.
|
[12] |
ALTMAN N S. An introduction to kernel and nearest-neighbor nonparametric regression[J]. The American Statistician, 1992, 46(3): 175-185.
|
[13] |
BREIMAN L, FRIEDMAN J H, OLSHEN R A, et al. Classification and regression trees[M]. Belmont: Wadsworth International Group, 1984: 358.
|
[14] |
AN P, MA Y Q, XIAO P, et al. Development and validation of reactor nuclear design code CORCA-3D[J]. Nuclear Engineering and Technology, 2019, 51(7): 1721-1728. doi: 10.1016/j.net.2019.05.015
|
[15] |
LI X Y, LIU Q W, LI Q, et al. 177 Core Nuclear Design for HPR1000[J]. Nuclear Power Engineering, 2019, 40(S1): 8-12.
|
[1] | Yan Jiasheng, Sui Yang, Dai Tao, Liu Jiayi, Jin Yi, Jia Xiaolong. Research on Intelligent Accident Diagnosis Model of Nuclear Reactor Coolant System[J]. Nuclear Power Engineering, 2025, 46(2): 282-292. doi: 10.13832/j.jnpe.2024.060034 |
[2] | Li Li, Zhang Yingxun, Yang Junping, Cui Ying, Chen Xiang, Wang Xinyu, Zhao Kai. Using Convolutional Neural Networks to Distinguish Nucleon Effective Mass Splitting[J]. Nuclear Power Engineering, 2025, 46(2): 68-75. doi: 10.13832/j.jnpe.2024.09.0028 |
[3] | Xu Yujie, Mo Jinhong, Dong Xiaomeng, Liu Yong, Xu Anqi, Yu Yang. Research on Parameter Prediction for Transient Conditions in Rod Bundle Subchannel Based on POD-ML Method[J]. Nuclear Power Engineering, 2025, 46(2): 177-185. doi: 10.13832/j.jnpe.2024.080031 |
[4] | Ma Yichao, Kong Dexiang, Tian Wenxi, Zhang Jing, Wu Yingwei, Qiu Suizheng, Su Guanghui. Development of Prediction Model for Two-phase Flow Regime in Nuclear Reactor Core Based on Artificial Neural Network[J]. Nuclear Power Engineering, 2025, 46(2): 156-163. doi: 10.13832/j.jnpe.2024.090038 |
[5] | Zhang He, Liang Biao, Wang Bo, Tan Sichao, Han Rui, Li Jiangkuan, Tian Ruifeng. Research on Rapid Reconstruction Technology of Temperature Field in Heat Transfer Tube of Steam Generator Based on POD and Neural Network[J]. Nuclear Power Engineering, 2025, 46(2): 90-97. doi: 10.13832/j.jnpe.2024.070047 |
[6] | Song Meiqi, Chen Fukun, Liu Xiaojing. An Overview of Data Fusion Methods for the Digital Twin of Nuclear Reactor[J]. Nuclear Power Engineering, 2025, 46(2): 14-37. doi: 10.13832/j.jnpe.2024.11.0148 |
[7] | Ding Yongwang, Zhang Han, Peng Chuzhen, Wu Yingjie, Guo Jiong, Peng Wei, Zhang Ping, Li Fu. POD-RBF Based ROM Method to Calculate Temporal-Spatial Temperature Distribution under DLOFC Accident for VHTR[J]. Nuclear Power Engineering, 2025, 46(2): 107-118. doi: 10.13832/j.jnpe.2024.10.0056 |
[8] | Min Guangyun, Jiang Naibin. A Reduced-Order Model of Mode Characteristics and Flow-Induced Vibration Response of Fuel Rod Based on POD Method[J]. Nuclear Power Engineering, 2024, 45(4): 142-149. doi: 10.13832/j.jnpe.2024.04.0142 |
[9] | Zhang Junquan, Deng Jian, Luo Yan, Lu Tao. Research on Prediction and Sensitivity Analysis of Minimum Film Boiling Temperature of Quenching Boiling Based on Machine Learning[J]. Nuclear Power Engineering, 2024, 45(4): 69-76. doi: 10.13832/j.jnpe.2024.04.0069 |
[10] | Zhao Ziyan, Xiang Zhaocai, Zhao Pengcheng. Research on Fast Prediction Method of Neutron Flux Based on Hybrid Driven Reduced Order Model[J]. Nuclear Power Engineering, 2024, 45(4): 1-8. doi: 10.13832/j.jnpe.2024.04.0001 |
[11] | Huang Tao, Zhu Dahuan, Zeng Wei, Fang Weiyang, Xiong Qingwen, Zhang Zhuo, Huang Qingyu. A Nuclear Reactor Accident Diagnosis Technology Integrating Expert Knowledge and Machine Learning Algorithms[J]. Nuclear Power Engineering, 2024, 45(S2): 144-149. doi: 10.13832/j.jnpe.2024.S2.0144 |
[12] | Liu Zhenhai, Qi Feipeng, Zhou Yi, Li Yuanming, Li Wenjie, Zeng Wei, Xin Yong, Wang Haoyu, Ma Chao. Research on Construction Method of a Machine Learning-Based Fuel Rod Temperature Distribution Surrogate Model[J]. Nuclear Power Engineering, 2023, 44(S2): 1-5. doi: 10.13832/j.jnpe.2023.S2.0001 |
[13] | Yan Jianguo, Zheng Shumin, Guo Pengcheng, Zhao Li, Wang Shuai, Liu Kun, Zhu Xutao. Research on Prediction of Subcooled Flow Boiling CHF for Spiral Flow Based on Machine Learning[J]. Nuclear Power Engineering, 2023, 44(3): 65-73. doi: 10.13832/j.jnpe.2023.03.0065 |
[14] | Zhu Longxiang, Zhang Luteng, Sun Wan, Ma Zaiyong, Pan Liangming. Identification of Flow Regime of Boiling Flow in a Vertical Annulus with Unsupervised Machine Learning[J]. Nuclear Power Engineering, 2023, 44(3): 112-120. doi: 10.13832/j.jnpe.2023.03.0112 |
[15] | Li Xiangyu, Cheng Kun, Tan Sichao, Huang Tao, Yuan Dongdong. Fault Diagnosis Method of Nuclear Power Plant Based on Adaboost Algorithm[J]. Nuclear Power Engineering, 2022, 43(4): 118-125. doi: 10.13832/j.jnpe.2022.04.0118 |
[16] | Li Kaiyu, Cai Qi, Cai Xinxin, Chen Yuqing, Peng Liu, Zhang Yifang. Application of Digital Twin Technology in the Design Phase of Floating Nuclear Power Plants[J]. Nuclear Power Engineering, 2022, 43(1): 197-201. doi: 10.13832/j.jnpe.2022.01.0197 |
[17] | Ma Dongliang, Zhou Tao, Huang Yanping. Research on Judgment of Supercritical Water Heat Transfer Deterioration Based on Machine Learning[J]. Nuclear Power Engineering, 2021, 42(4): 91-95. doi: 10.13832/j.jnpe.2021.04.0091 |
[18] | Zeng Xiaokang, Huang Yanping, Zhang Liqin, Lang Xuemei, Zan Yuanfeng, Yuan Dewen. Application of System Engineering Methodology in Digital Experiment of Nuclear Reactor Engineering[J]. Nuclear Power Engineering, 2020, 41(3): 177-182. doi: 10.13832/j.jnpe.2020.03.0177 |
[19] | Zeng Yuyun, Liu Jingquan, Yang Chunzhen, Sun Kaichao. A Machine Learning Based System Performance Prediction Model for Small Reactors[J]. Nuclear Power Engineering, 2018, 39(1): 117-121. doi: 10.13832/j.jnpe.2018.01.0117 |
[20] | LI Mingli, SHI Guilian, TANG Huan. Effect of Logic Degradation on Reliability of Digital Reactor Protection System[J]. Nuclear Power Engineering, 2012, 33(2): 21-24. |
1. | 龙家雨,宋美琪,柴翔,刘晓晶,妥艳洁. 基于聚类和随机搜索优化的核反应堆数字孪生参数反演模型. 原子能科学技术. 2024(01): 125-134 . ![]() | |
2. | 薛睿渊,张永楠,张希恒,俞树荣,孟晓桥,余建平. 核电阀门管系高保真动力学模型修正技术研究. 核动力工程. 2024(01): 130-138 . ![]() | |
3. | 曾付林,张小龙,赵鹏程. 基于hp-VPINN的反应堆中子扩散计算方法研究. 核动力工程. 2024(02): 53-62 . ![]() | |
4. | 龚禾林,刘威震,吴屈,李庆,李天涯,廖鸿宽,钟旻霄,王江宇,赵文博,张世全,陈长. 核反应堆物理计算数据同化研究进展. 火箭军工程大学学报. 2024(02): 57-71 . ![]() | |
5. | 龚禾林,洪历展,赵文博,王江宇,廖鸿宽,李天涯,钟旻霄,李庆,陈长. 基于“全局-局部”搜索的核反应堆运行孪生反问题求解. 原子能科学技术. 2024(07): 1424-1431 . ![]() | |
6. | 郭林,张凯,万承辉,吴宏春. 基于实测数据融合的堆芯物理模型反演优化方法及工业验证研究. 原子能科学技术. 2024(07): 1432-1439 . ![]() | |
7. | 厉井钢,李文淮,张香菊,王军令,王婷,卢皓亮,彭思涛. 在线堆芯监测系统的研究现状与建议. 原子能科学技术. 2024(07): 1393-1405+1387 . ![]() | |
8. | 张成龙,周梦飞,张鹏,刘国明,袁媛. 基于PCA的气冷微型堆堆芯在线监测方法研究. 原子能科学技术. 2024(07): 1467-1477 . ![]() | |
9. | 赵梓炎,向钊才,赵鹏程. 基于混合驱动降阶模型的中子注量率快速预测方法研究. 核动力工程. 2024(04): 1-8 . ![]() | |
10. | 熊宇涵,李雄,谢雨琪,张祎伟,杜占鹏,边建涛. 基于数字孪生的决策系统建模综述. 工业技术创新. 2023(02): 1-9 . ![]() | |
11. | 梁鑫源,王毅箴,郝琛. 基于降阶模型的中子扩散特征值问题的不确定性分析研究. 原子能科学技术. 2023(08): 1584-1591 . ![]() | |
12. | 姜钊,于辉,兰志成,苏彬,杜洋. 我国军工企业智能制造实现路径. 数字技术与应用. 2022(05): 49-52 . ![]() | |
13. | 李彦儒,胡雪飞,朱明冬,吴佳玥,张润豪,曹立彦,曹奇锋. 基于专家系统的堆内构件典型部件设计研究. 广州化工. 2022(15): 54-56 . ![]() | |
14. | 苏彬,姜钊. 航空航天领域数字孪生技术应用浅析. 现代工业经济和信息化. 2022(09): 132-134 . ![]() |